Skip to main content
Log in

Evaluation of connectivity estimates using spiking neuronal network models

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The flow of information between different regions of the cortex is fundamental for brain function. Researchers use causality detection techniques, such as Granger causality, to infer connectivity among brain areas from time series. Generalized partial directed coherence (GPDC) is a frequency domain linear method based on vector autoregressive model, which has been applied in electroencephalography, local field potential, and blood oxygenation level-dependent signals. Despite its widespread usage, previous attempts to validate GPDC use oversimplified simulated data, which do not reflect the nonlinearities and network couplings present in biological signals. In this work, we evaluated the GPDC performance when applied to simulated LFP signals, i.e., generated from networks of spiking neuronal models. We created three models, each containing five interacting networks, and evaluated whether the GPDC method could accurately detect network couplings. When using a stronger coupling, we showed that GPDC correctly detects all existing connections from simulated LFP signals in the three models, without false positives. Varying the coupling strength between networks, by changing the number of connections or synaptic strengths, and adding noise in the times series, altered the receiver operating characteristic (ROC) curve, ranging from perfect to chance level retrieval. We also showed that GPDC values correlated with coupling strength, indicating that GPDC values can provide useful information regarding coupling strength. These results reinforce that GPDC can be used to detect causality relationships over neural signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Akam T, Kullmann DM (2010) Oscillations and filtering networks support flexible routing of information. Neuron 67(2):308–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akam T, Kullmann DM (2014) Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat Rev Neurosci 15(2):111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baccalá LA, Sameshima K, Takahashi D (2007) Generalized partial directed coherence. In: 2007 15th International conference on digital signal processing. IEEE, pp 163–166

  • Baccalá LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84(6):463–474

    Article  PubMed  Google Scholar 

  • Barnett L, Seth AK (2014) The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J Neurosci Methods 223:50–68

    Article  PubMed  Google Scholar 

  • Bastos AM, Schoffelen JM (2016) A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci 9:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastos AM, Vezoli J, Fries P (2015) Communication through coherence with inter-areal delays. Curr Opin Neurobiol 31:173–180

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi C, König P (1999) On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biol Cybern 81(3):199–210

    Article  CAS  PubMed  Google Scholar 

  • Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101(26):9849–9854

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cadotte AJ, DeMarse TB, He P, Ding M (2008) Causal measures of structure and plasticity in simulated and living neural networks. PloS ONE 3(10):e3355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cadotte AJ, DeMarse TB, Mareci TH, Parekh MB, Talathi SS, Hwang DU, Ditto WL, Ding M, Carney PR (2010) Granger causality relationships between local field potentials in an animal model of temporal lobe epilepsy. J Neurosci Methods 189(1):121–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Campo AT, Martinez-Garcia M, Nácher V, Luna R, Romo R, Deco G (2015) Task-driven intra-and interarea communications in primate cerebral cortex. Proc Natl Acad Sci 112(15):4761–4766

    Article  CAS  Google Scholar 

  • Cavallari S, Panzeri S, Mazzoni A (2014) Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Front Neural Circuits 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20(3):1743–1755

    Article  PubMed  Google Scholar 

  • David O, Cosmelli D, Friston KJ (2004) Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage 21(2):659–673

    Article  PubMed  Google Scholar 

  • Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14(11):770

    Article  CAS  PubMed  Google Scholar 

  • Faes L, Nollo G (2010) Extended causal modeling to assess partial directed coherence in multiple time series with significant instantaneous interactions. Biol Cybern 103(5):387–400

    Article  PubMed  Google Scholar 

  • Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36

    Article  PubMed  Google Scholar 

  • Gao L, Sommerlade L, Coffman B, Zhang T, Stephen JM, Li D, Wang J, Grebogi C, Schelter B (2015) Granger causal time-dependent source connectivity in the somatosensory network. Sci Rep 5(10):399

    Google Scholar 

  • Garofalo M, Nieus T, Massobrio P, Martinoia S (2009) Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PloS ONE 4(8):e6482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 77(378):304–313

    Article  Google Scholar 

  • Goñi J, van den Heuvel MP, Avena-Koenigsberger A, de Mendizabal NV, Betzel RF, Griffa A, Hagmann P, Corominas-Murtra B, Thiran JP, Sporns O (2014) Resting-brain functional connectivity predicted by analytic measures of network communication. Proc Natl Acad Sci 111(2):833–838

    Article  PubMed  CAS  Google Scholar 

  • Granger CW (1969) Investigating causal relations by econometric models and cross-spectral methods. Econom J Econom Soc 37(3):424–438

    Google Scholar 

  • Hamilton JD (1994) Time series analysis, vol 2. Princeton University Press, Princeton

    Google Scholar 

  • Hoerzer GM, Liebe S, Schloegl A, Logothetis NK, Rainer G (2010) Directed coupling in local field potentials of macaque v4 during visual short-term memory revealed by multivariate autoregressive models. Front Comput Neurosci 4:14

    PubMed  PubMed Central  Google Scholar 

  • Hu B, Dong Q, Hao Y, Zhao Q, Shen J, Zheng F (2017) Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects. J Neural Eng 14(4):046,002

    Article  Google Scholar 

  • Ito S, Hansen ME, Heiland R, Lumsdaine A, Litke AM, Beggs JM (2011a) Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS ONE 6(11):1–13

    CAS  Google Scholar 

  • Ito S, Hansen ME, Heiland R, Lumsdaine A, Litke AM, Beggs JM (2011b) Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PloS ONE 6(11):e27,431

    Article  CAS  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18(2):245–282

    Article  PubMed  Google Scholar 

  • Kaminski M, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210

    Article  CAS  PubMed  Google Scholar 

  • Kamiński M, Liang H (2005) Causal influence: advances in neurosignal analysis. Crit Rev Biomed Eng 33(4):347–430

    Article  PubMed  Google Scholar 

  • Kim S, Putrino D, Ghosh S, Brown EN (2011) A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Comput Biol 7(3):e1001,110

    Article  CAS  Google Scholar 

  • Koch C, Segev I (1988) Methods in neuronal modeling: from synapses to networks. MIT Press, Cambridge

    Google Scholar 

  • Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT (2011) Modeling the spatial reach of the LFP. Neuron 72(5):859–872

    Article  PubMed  CAS  Google Scholar 

  • Lopes dSF, Hoeks A, Smits H, Zetterberg L (1974) Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik 15(1):27

    Article  Google Scholar 

  • Lowet E, Roberts MJ, Bonizzi P, Karel J, De Weerd P (2016) Quantifying neural oscillatory synchronization: a comparison between spectral coherence and phase-locking value approaches. PloS ONE 11(1):e0146,443

    Article  CAS  Google Scholar 

  • Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG and MEG data. J Neurosci Methods 164(1):177–190

    Article  PubMed  Google Scholar 

  • Massaroppe L, Baccalá LA (2015) Kernel-nonlinear-PDC extends partial directed coherence to detecting nonlinear causal coupling. In: Engineering in medicine and biology society (EMBC), 2015 37th annual international conference of the IEEE. IEEE, pp 2864–2867

  • Matias FS, Gollo LL, Carelli PV, Bressler SL, Copelli M, Mirasso CR (2014) Modeling positive Granger causality and negative phase lag between cortical areas. NeuroImage 99:411–418

    Article  PubMed  Google Scholar 

  • Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol 4(12):e1000,239

    Article  CAS  Google Scholar 

  • Mazzoni A, Brunel N, Cavallari S, Logothetis NK, Panzeri S (2011) Cortical dynamics during naturalistic sensory stimulations: experiments and models. J Physiol Paris 105(1–3):2–15

    Article  PubMed  Google Scholar 

  • Mazzoni A, Lindén H, Cuntz H, Lansner A, Panzeri S, Einevoll GT (2015) Computing the local field potential (LFP) from integrate-and-fire network models. PLOS Comput Biol 11(12):e1004,584

    Article  CAS  Google Scholar 

  • Ning Y, Zheng R, Li K, Zhang Y, Lyu D, Jia H, Ren Y, Zou Y (2018) The altered Granger causality connection among pain-related brain networks in migraine. Medicine 97(10):e0102

    Article  PubMed  PubMed Central  Google Scholar 

  • Omidvarnia A, Azemi G, Boashash B, OToole JM, Colditz PB, Vanhatalo S (2014) Measuring time-varying information flow in scalp EEG signals: orthogonalized partial directed coherence. IEEE Trans Biomed Eng 61(3):680–693

    Article  PubMed  Google Scholar 

  • Papana A, Kyrtsou C, Kugiumtzis D, Diks C (2013) Simulation study of direct causality measures in multivariate time series. Entropy 15(7):2635–2661

    Article  Google Scholar 

  • Pascual-Marqui R, Biscay R, Bosch-Bayard J, Lehmann D, Kochi K, Yamada N, Kinoshita T, Sadato N (2014) Isolated effective coherence (iCoh): causal information flow excluding indirect paths. arXiv preprint arXiv:1402.4887

  • Rodrigues PL, Baccalá LA (2016) Statistically significant time-varying neural connectivity estimation using generalized partial directed coherence. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 5493–5496

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Saito Y, Harashima H (1981) Tracking of information within multichannel EEG record causal analysis in EEG. In: Yamaguchi N, Fujisawa K (eds) Recent advances in EEG and EMG data processing. Elsevier, Amsterdam, pp 133–146

    Google Scholar 

  • Sameshima K, Baccalá LA (1999) Using partial directed coherence to describe neuronal ensemble interactions. J Neurosci Methods 94(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Sancristóbal B, Vicente R, Garcia-Ojalvo J (2014) Role of frequency mismatch in neuronal communication through coherence. J Computat Neurosci 37(2):193–208

    Article  Google Scholar 

  • Santarnecchi E, Galli G, Polizzotto NR, Rossi A, Rossi S (2014) Efficiency of weak brain connections support general cognitive functioning. Hum Brain Mapp 35(9):4566–4582

    Article  PubMed  Google Scholar 

  • Sato JR, Takahashi DY, Arcuri SM, Sameshima K, Morettin PA, Baccalá LA (2009) Frequency domain connectivity identification: an application of partial directed coherence in fMRI. Hum Brain Mapp 30(2):452–461

    Article  PubMed  Google Scholar 

  • Schelter B, Timmer J, Eichler M (2009) Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods 179(1):121–130

    Article  PubMed  Google Scholar 

  • Seidler R, Erdeniz B, Koppelmans V, Hirsiger S, Mérillat S, Jäncke L (2015) Associations between age, motor function, and resting state sensorimotor network connectivity in healthy older adults. NeuroImage 108:47–59

    Article  PubMed  Google Scholar 

  • Seth AK (2010) A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods 186(2):262–273

    Article  PubMed  Google Scholar 

  • Shakil S, Lee CH, Keilholz SD (2016) Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. NeuroImage 133:111–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao PC, Huang JJ, Shann WC, Yen CT, Tsai ML, Yen CC (2015) Granger causality-based synaptic weights estimation for analyzing neuronal networks. J Comput Neurosci 38(3):483–497

    Article  PubMed  Google Scholar 

  • Shim WH, Baek K, Kim JK, Chae Y, Suh JY, Rosen BR, Jeong J, Kim YR (2013) Frequency distribution of causal connectivity in rat sensorimotor network: resting-state fMRI analyses. J Neurophysiol 109(1):238–248

    Article  PubMed  Google Scholar 

  • Sommariva S, Sorrentino A, Piana M, Pizzella V, Marzetti L (2017) A comparative study of the robustness of frequency-domain connectivity measures to finite data length. Brain topography pp 1–21

  • Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of computational modelling in neuroscience. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Takahashi DY, Baccalá LA, Sameshima K (2008) Partial directed coherence asymptotics for var processes of infinite order. Int J Bioelectromagn 10(1):31–36

    Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):1055–1096

    Article  Google Scholar 

  • Tomov P, Pena RF, Zaks MA, Roque AC (2014) Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Front Comput Neurosci 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang HE, Bénar CG, Quilichini PP, Friston KJ, Jirsa VK, Bernard C (2014) A systematic framework for functional connectivity measures. Front Neurosci 8:405

    PubMed  PubMed Central  Google Scholar 

  • Wu MH, Frye RE, Zouridakis G (2011a) A comparison of multivariate causality based measures of effective connectivity. Comput Biol Med 41(12):1132–1141

    Article  PubMed  Google Scholar 

  • Wu X, Zhou C, Wang J, Lu Ja (2011b) Detecting the topology of a neural network from partially obtained data using piecewise granger causality. In: International symposium on neural networks. Springer, pp 166–175

  • Youssofzadeh V, Prasad G, Naeem M, Wong-Lin K (2016) Temporal information of directed causal connectivity in multi-trial ERP data using partial Granger causality. Neuroinformatics 14(1):99–120

    Article  PubMed  Google Scholar 

  • Zhang L, Chen G, Niu R, Wei W, Ma X, Xu J, Wang J, Wang Z, Lin L (2012) Hippocampal theta-driving cells revealed by Granger causality. Hippocampus 22(8):1781–1793

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Federal University of ABC (UFABC) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo V. Nunes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, R.V., Reyes, M.B. & de Camargo, R.Y. Evaluation of connectivity estimates using spiking neuronal network models. Biol Cybern 113, 309–320 (2019). https://doi.org/10.1007/s00422-019-00796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-019-00796-8

Keywords

Navigation