Skip to main content

Advertisement

Log in

Evidence for a de novo, dominant germ-line mutation causative of osteogenesis imperfecta in two Red Angus calves

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

A genetic disorder, osteogenesis imperfecta (OI) is broadly characterized by connective tissue abnormalities and bone fragility most commonly attributed to alterations in Type I collagen. Two Red Angus calves by the same sire presented with severe bone and dental fragility, blue sclera, and evidence of in utero fractures consistent with OI congenita. Comparative analyses with human cases suggested the OI in these calves most closely resembled that classified as OI Type II. Due to the phenotypic classification and shared paternity, a dominant, germ-line variant was hypothesized as causative although recessive genotypes were also considered due to a close relationship between the sire and dam of one calf. Whole-genome sequencing revealed the presence of a missense mutation in the alpha 1 chain of collagen Type I (COL1A1), for which both calves were heterozygous. The variant resulted in the substitution of a glycine residue with serine in the triple helical domain of the protein; in this region, glycine normally occupies every third position as is critical for correct formation of the Type I collagen molecule. Allele-specific amplification by droplet digital PCR further quantified the variant at a frequency of nearly 4.4% in the semen of the sire while it was absent in his blood, supporting the hypothesis of a de novo causative variant for which the germ line of the sire was mosaic. The identification of novel variants associated with unwanted phenotypes in livestock is critical as the high prolificacy of breeding stock has the potential to rapidly disseminate undesirable variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

Whole-genome sequence files are available at the NCBI Sequence Read Archive (SRA accession: PRJNA513064). Novel variants identified are annotated and available as project PRJEB31123, analyses ERZ805155, at the European Variation Archive (EVA).

References

  • Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 76:7–20

    Google Scholar 

  • Agerholm JS, Lund AM, Bloch B, Reibel J, Basse A, Arnbjerg J (1994) Osteogenesis imperfecta in Holstein-Friesian calves. Zentralbl Veterinarmed A 41:128–138

    Article  CAS  PubMed  Google Scholar 

  • Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D et al (2010) Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 86:551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubin I, Adams CP, Opsahl S, Septier D, Bishop CE, Auge N et al (2005) A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet 37:803–805

    Article  CAS  PubMed  Google Scholar 

  • Baldridge D, Schwarze U, Morello R, Lennington J, Bertin TK, Pace JM et al (2008) CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta. Hum Mutat 29:1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes AM, Chang W, Morello R, Cabral WA, Weis M, Eyre DR et al (2006) Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med 355:2757–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventure J, Cohen-Solal L, Lasselin C, Maroteaux P (1992) A dominant mutation in the COL1A1 gene that substitutes glycine for valine causes recurrent lethal osteogenesis imperfecta. Hum Genet 89:640–646

    Article  CAS  PubMed  Google Scholar 

  • Bourneuf E, Otz P, Pausch H, Jagannathan V, Michot P, Grohs C et al (2017) Rapid discovery of de novo deleterious mutations in cattle enhances the value of livestock as model species. Sci Rep 7:11466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers PH, Tsipouras P, Bonadio JF, Starman BJ, Schwartz RC (1988) Perinatal lethal osteogenesis imperfecta (OI type II): a biochemically heterogeneous disorder usually due to new mutations in the genes for type I collagen. Am J Hum Genet 42:237–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S et al (2007) Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 39:359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral WA, Barnes AM, Adeyemo A, Cushing K, Chitayat D, Porter FD et al (2012) A founder mutation in LEPRE1 carried by 1.5% of West Africans and 0.4% of African Americans causes lethal recessive osteogenesis imperfecta. Genet Med 14:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y (2012) AM conference on bioinformatics, computational biology and biomedicine. ACM, New York, pp 414–417

    Google Scholar 

  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 70:e46688

    Article  CAS  Google Scholar 

  • Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S et al (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn DH, Starman BJ, Blumberg B, Byers PH (1990) Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a dominant mutation in a human type I collagen gene (COL1A1). Am J Hum Genet 46:591–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole WG, Chow CW, Rogers JG, Bateman JF (1990) The clinical features of three babies with osteogenesis imperfecta resulting from the substitution of glycine by arginine in the pro alpha 1(I) chain of type I procollagen. J Med Genet 27:228–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denholm LJ, Cole WG (1983) Heritable bone fragility, joint laxity and dysplastic dentin in Friesian calves: a bovine syndrome of osteogenesis imperfecta. Aust Vet J 60:9–17

    Article  CAS  PubMed  Google Scholar 

  • Forlino A, Cabral WA, Barnes AM, Marini JC (2011) New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7:540–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton MP, Smith TPL, Carnahan JK, Basnayake V, Qiu J, Simpson B et al (2016) Using diverse US beef cattle genomes to identify missense mutations in EPAS1, a gene associated with high-altitude pulmonary hypertension. J Anim Sci 94:161–162

    Article  Google Scholar 

  • Jensen PT, Rasmussen PG, Basse A (1976) Congenital osteogenesis imperfecta in Charollais cattle. Nord Vet Med 28:304–308

    CAS  PubMed  Google Scholar 

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303:3997v3992

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marini JC, Cabral WA (2018) Osteogenesis Imperfecta genetics of bone biology and skeletal disease. Elsevier Inc, Amsterdam, pp 397–420

    Book  Google Scholar 

  • Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, et al (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: Regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human Mutation 28(3):209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10–12

    Google Scholar 

  • Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M et al (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304

    Article  CAS  PubMed  Google Scholar 

  • Mottes M, Gomez Lira MM, Valli M, Scarano G, Lonardo F, Forlino A et al (1993) Paternal mosaicism for a COL1A1 dominant mutation (alpha 1 Ser-415) causes recurrent osteogenesis imperfecta. Hum Mutat 2:196–204

    Article  CAS  PubMed  Google Scholar 

  • Namikawa C, Suzumori K, Fukushima Y, Sasaki M, Hata A (1995) Recurrence of osteogenesis imperfecta because of paternal mosaicism: Gly862–>Ser substitution in a type I collagen gene (COL1A1). Hum Genet 95:666–670

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    Article  CAS  PubMed  Google Scholar 

  • Pyott SM, Schwarze U, Christiansen HE, Pepin MG, Leistritz DF, Dineen R et al (2011) Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes. Hum Mol Genet 20:1595–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Mekkat A, Yu H, Yigit S, Hamaia S, Farndale RW et al (2018) Collagen Gly missense mutations: effect of residue identity on collagen structure and integrin binding. J Struct Biol 203:255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghunath M, Steinmann B, Delozier-Blanchet C, Extermann P, Superti-Furga A (1994) Prenatal diagnosis of collagen disorders by direct biochemical analysis of chorionic villus biopsies. Pediatr Res 36:441–448

    Article  CAS  PubMed  Google Scholar 

  • Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Rich A, Crick FH (1961) The molecular structure of collagen. J Mol Biol 3:483–506

    Article  CAS  PubMed  Google Scholar 

  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez Celin M, Moosa S, Fano V (2018) Uncommon IFITM5 mutation associated with severe skeletal deformity in osteogenesis imperfecta. Ann Hum Genet 82:477–481

    Article  CAS  PubMed  Google Scholar 

  • Sillence DO, Senn A, Danks DM (1979) Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16:101–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Termine JD, Robey PG, Fisher LW, Shimokawa H, Drum MA, Conn KM et al (1984) Osteonectin, bone proteoglycan, and phosphophoryn defects in a form of bovine osteogenesis imperfecta. Proc Natl Acad Sci USA 81:2213–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valli M, Mottes M, Tenni R, Sangalli A, Gomez Lira M, Rossi A et al (1991) A de novo G to T transversion in a pro-alpha 1 (I) collagen gene for a moderate case of osteogenesis imperfecta. Substitution of cysteine for glycine 178 in the triple helical domain. J Biol Chem 266:1872–1878

    CAS  PubMed  Google Scholar 

  • Van Dijk FS, Nesbitt IM, Nikkels PG, Dalton A, Bongers EM, van de Kamp JM et al (2009a) CRTAP mutations in lethal and severe osteogenesis imperfecta: the importance of combining biochemical and molecular genetic analysis. Eur J Hum Genet 17:1560–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR, Fratantoni SA et al (2009b) PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85:521–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dijk FS, Cobben JM, Kariminejad A, Maugeri A, Nikkels PG, van Rijn RR et al (2011) Osteogenesis imperfecta: a review with clinical examples. Mol Syndromol 2:1–20

    PubMed  PubMed Central  Google Scholar 

  • Wallis GA, Starman BJ, Zinn AB, Byers PH (1990) Variable expression of osteogenesis imperfecta in a nuclear family is explained by somatic mosaicism for a lethal point mutation in the alpha 1(I) gene (COL1A1) of type I collagen in a parent. Am J Hum Genet 46:1034–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yigit S, Yu H, An B, Hamaia S, Farndale RW, Kaplan DL et al (2016) Mapping the effect of Gly mutations in collagen on alpha2beta1 integrin binding. J Biol Chem 291:19196–19207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Red Angus Association of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica L. Petersen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the University of Nebraska-Lincoln.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accession IDs: Bos taurus—NCBI:txid9913; COL1A1—GeneID: 282187.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, J.L., Tietze, S.M., Burrack, R.M. et al. Evidence for a de novo, dominant germ-line mutation causative of osteogenesis imperfecta in two Red Angus calves. Mamm Genome 30, 81–87 (2019). https://doi.org/10.1007/s00335-019-09794-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-019-09794-4

Navigation