Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting Mitochondria through the Use of Mitocans as Emerging Anticancer Agents

Author(s): Ioana Macasoi, Alexandra Mioc, Marius Mioc*, Roxana Racoviceanu, Irina Soica, Adelina Chevereșan, Cristina Dehelean and Victor Dumitrașcu

Volume 27, Issue 34, 2020

Page: [5730 - 5757] Pages: 28

DOI: 10.2174/0929867326666190712150638

Price: $65

Abstract

Mitochondria are key players with a multi-functional role in many vital cellular processes, such as energy metabolism, redox regulation, calcium homeostasis, Reactive Oxygen Species (ROS) as well as in cell signaling, survival and apoptosis. These functions are mainly regulated through important enzyme signaling cascades, which if altered may influence the outcome of cell viability and apoptosis. Therefore some of the key enzymes that are vital for these signaling pathways are emerging as important targets for new anticancer agent development. Mitocans are compounds aimed at targeting mitochondria in cancer cells by altering mitochondrial functions thus causing cell growth inhibition or apoptosis. This review summarizes the till present known classes of mitocans, their mechanism of action and potential therapeutic use in different forms of cancer.

Keywords: Mithocondria, cancer, mitocans, electron transport chain, hexokinase, pyruvate dehydrogenase kinase, lactate dehydrogenase, Bcl-2.

[1]
Panda, V.; Khambat, P.; Patil, S. Mitocans as novel agents for anticancer therapy: an overview. Int. J. Clin. Med., 2011, 02(04), 515-529.
[http://dx.doi.org/10.4236/ijcm.2011.24086]
[2]
Brand, M.D.; Orr, A.L.; Perevoshchikova, I.V.; Quinlan, C.L. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br. J. Dermatol., 2013, 169(Suppl. 2), 1-8.
[http://dx.doi.org/10.1111/bjd.12208 ] [PMID: 23786614]
[3]
Edeas, M.; Weissig, V. Targeting mitochondria: strategies, innovations and challenges: The future of medicine will come through mitochondria. Mitochondrion, 2013, 13(5), 389-390.
[http://dx.doi.org/10.1016/j.mito.2013.03.009 ] [PMID: 23562877]
[4]
Kroemer, G.; Senovilla, L.; Galluzzi, L.; André, F.; Zitvogel, L. Natural and therapy-induced immunosurveillance in breast cancer. Nat. Med., 2015, 21(10), 1128-1138.
[http://dx.doi.org/10.1038/nm.3944 ] [PMID: 26444637]
[5]
Bui, J.D.; Schreiber, R.D. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr. Opin. Immunol., 2007, 19(2), 203-208.
[http://dx.doi.org/10.1016/j.coi.2007.02.001 ] [PMID: 17292599]
[6]
Erez, A.; DeBerardinis, R.J. Metabolic dysregulation in monogenic disorders and cancer - finding method in madness. Nat. Rev. Cancer, 2015, 15(7), 440-448.
[http://dx.doi.org/10.1038/nrc3949 ] [PMID: 26084394]
[7]
Trachootham, D.; Zhang, H.; Zhang, W.; Feng, L.; Du, M.; Zhou, Y.; Chen, Z.; Pelicano, H.; Plunkett, W.; Wierda, W.G.; Keating, M.J.; Huang, P. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood, 2008, 112(5), 1912-1922.
[http://dx.doi.org/10.1182/blood-2008-04-149815 ] [PMID: 18574029]
[8]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803 ] [PMID: 19478820]
[9]
Lu, W.; Ogasawara, M.A.; Huang, P. Models of reactive oxygen species in cancer. Drug Discov. Today Dis. Models, 2008.
[PMID: 18591999]
[10]
Armstrong, J.S. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br. J. Pharmacol., 2007, 151(8), 1154-1165.
[http://dx.doi.org/10.1038/sj.bjp.0707288 ] [PMID: 17519949]
[11]
Weinberg, S.E.; Chandel, N.S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol., 2015, 11(1), 9-15.
[http://dx.doi.org/10.1038/nchembio.1712 ] [PMID: 25517383]
[12]
Neuzil, J.; Dyason, J.C.; Freeman, R.; Dong, L-F.; Prochazka, L.; Wang, X-F.; Scheffler, I.; Ralph, S.J. Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J. Bioenerg. Biomembr., 2007, 39(1), 65-72.
[http://dx.doi.org/10.1007/s10863-006-9060-z ] [PMID: 17294131]
[13]
Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer, 2014, 14(11), 709-721.
[http://dx.doi.org/10.1038/nrc3803 ] [PMID: 25342630]
[14]
Ma, J.; Zhang, Q.; Chen, S.; Fang, B.; Yang, Q.; Chen, C.; Miele, L.; Sarkar, F.H.; Xia, J.; Wang, Z. Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species. PLoS One, 2013, 8(7)e69485
[http://dx.doi.org/10.1371/journal.pone.0069485 ] [PMID: 23922721]
[15]
Ohsawa, S.; Sato, Y.; Enomoto, M.; Nakamura, M.; Betsumiya, A.; Igaki, T. Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature, 2012, 490(7421), 547-551.
[http://dx.doi.org/10.1038/nature11452 ] [PMID: 23023132]
[16]
Yuan, D.; Huang, S.; Berger, E.; Liu, L.; Gross, N.; Heinzmann, F.; Ringelhan, M.; Connor, T.O.; Stadler, M.; Meister, M.; Weber, J.; Öllinger, R.; Simonavicius, N.; Reisinger, F.; Hartmann, D.; Meyer, R.; Reich, M.; Seehawer, M.; Leone, V.; Höchst, B.; Wohlleber, D.; Jörs, S.; Prinz, M.; Spalding, D.; Protzer, U.; Luedde, T.; Terracciano, L.; Matter, M.; Longerich, T.; Knolle, P.; Ried, T.; Keitel, V.; Geisler, F.; Unger, K.; Cinnamon, E.; Pikarsky, E.; Hüser, N.; Davis, R.J.; Tschaharganeh, D.F.; Rad, R.; Weber, A.; Zender, L.; Haller, D.; Heikenwalder, M. Kupffer cell-derived TNF triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS. Cancer Cell, 2017, 31(6), 771-789.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.05.006 ] [PMID: 28609656]
[17]
Gaude, E.; Frezza, C. Defects in mitochondrial metabolism and cancer. Cancer Metab., 2014, 2(1), 10.
[http://dx.doi.org/10.1186/2049-3002-2-10 ] [PMID: 25057353]
[18]
Blum, R.; Kloog, Y. Metabolism addiction in pancreatic cancer. Cell Death Dis., 2014.
[http://dx.doi.org/10.1038/cddis.2014.38 ] [PMID: 24556680]
[19]
Lin, C.C.; Cheng, T.L.; Tsai, W.H.; Tsai, H.J.; Hu, K.H.; Chang, H.C.; Yeh, C.W.; Chen, Y.C.; Liao, C.C.; Chang, W.T. Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci. Rep., 2012, 2, 785.
[http://dx.doi.org/10.1038/srep00785 ] [PMID: 23139858]
[20]
Singh, K.K.; Desouki, M.M.; Franklin, R.B.; Costello, L.C. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol. Cancer, 2006, 5, 14.
[http://dx.doi.org/10.1186/1476-4598-5-14 ] [PMID: 16595004]
[21]
Lu, C.; Ward, P.S.; Kapoor, G.S.; Rohle, D.; Turcan, S.; Abdel-Wahab, O.; Edwards, C.R.; Khanin, R.; Figueroa, M.E.; Melnick, A.; Wellen, K.E.; O’Rourke, D.M.; Berger, S.L.; Chan, T.A.; Levine, R.L.; Mellinghoff, I.K.; Thompson, C.B. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 2012, 483(7390), 474-478.
[http://dx.doi.org/10.1038/nature10860 ] [PMID: 22343901]
[22]
Kaminska, B.; Czapski, B.; Guzik, R.; Król, S.K.; Gielniewski, B. Consequences of IDH1/2 mutations in gliomas and an assessment of inhibitors targeting mutated IDH proteins. Molecules, 2019, 24(5), E968.
[http://dx.doi.org/10.3390/molecules24050968 ] [PMID: 30857299]
[23]
Letouzé, E.; Martinelli, C.; Loriot, C.; Burnichon, N.; Abermil, N.; Ottolenghi, C.; Janin, M.; Menara, M.; Nguyen, A.T.; Benit, P.; Buffet, A.; Marcaillou, C.; Bertherat, J.; Amar, L.; Rustin, P.; De Reyniès, A.; Gimenez-Roqueplo, A.P.; Favier, J. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell, 2013, 23(6), 739-752.
[http://dx.doi.org/10.1016/j.ccr.2013.04.018 ] [PMID: 23707781]
[24]
Zhao, T.; Mu, X.; You, Q. Succinate: An initiator in tumorigenesis and progression. Oncotarget, 2017, 8(32), 53819-53828.
[http://dx.doi.org/10.18632/oncotarget.17734 ] [PMID: 28881853]
[25]
Halestrap, A.P.; Doran, E.; Gillespie, J.P.; O’Toole, A. Mitochondria and cell death. Biochem. Soc. Trans., 2000, 28(2), 170-177.
[http://dx.doi.org/10.1042/bst0280170 ] [PMID: 10816121]
[26]
Halestrap, A.P.; Kerr, P.M.; Javadov, S.; Woodfield, K.Y. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta, 1998, 1366(1-2), 79-94.
[http://dx.doi.org/10.1016/S0005-2728(98)00122-4 ] [PMID: 9714750]
[27]
Javadov, S.; Karmazyn, M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell. Physiol. Biochem., 2007, 20(1-4), 1-22.
[http://dx.doi.org/10.1159/000103747 ] [PMID: 17595511]
[28]
Javadov, S.; Kuznetsov, A. Mitochondrial permeability transition and cell death: the role of cyclophilin D. Front. Physiol., 2013, 4, 76.
[http://dx.doi.org/10.3389/fphys.2013.00076 ] [PMID: 23596421]
[29]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013 ] [PMID: 21376230]
[30]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386 ] [PMID: 19061483]
[31]
Sánchez-Aragó, M.; Formentini, L.; Cuezva, J.M. Mitochondria-mediated energy adaption in cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors. Antioxid. Redox Signal., 2013, 19(3), 285-298.
[http://dx.doi.org/10.1089/ars.2012.4883 ] [PMID: 22901241]
[32]
Chen, Y.; Zhang, H.; Zhou, H.J.; Ji, W.; Min, W. Mitochondrial redox signaling and tumor progression. Cancers (Basel), 2016, 8(4), 40.
[http://dx.doi.org/10.3390/cancers8040040 ] [PMID: 27023612]
[33]
Otto Warburg, B.; Wind, F.; Negelein, N. THE METABOLISM OF TUMORS IN THE BODY. J. Gen. Physiol., 1927, 8(6), 519-530.
[http://dx.doi.org/10.1085/jgp.8.6.519 ] [PMID: 19872213]
[34]
Desjardins, P.; Frost, E.; Morais, R. Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Mol. Cell. Biol., 1985, 5(5), 1163-1169.
[http://dx.doi.org/10.1128/MCB.5.5.1163 ] [PMID: 2987677]
[35]
Faubert, B.; Li, K.Y.; Cai, L.; Hensley, C.T.; Kim, J.; Zacharias, L.G.; Yang, C.; Do, Q.N.; Doucette, S.; Burguete, D.; Li, H.; Huet, G.; Yuan, Q.; Wigal, T.; Butt, Y.; Ni, M.; Torrealba, J.; Oliver, D.; Lenkinski, R.E.; Malloy, C.R.; Wachsmann, J.W.; Young, J.D.; Kernstine, K.; DeBerardinis, R.J. Lactate metabolism in human lung tumors. Cell, 2017, 171(2), 358-371.e9.
[http://dx.doi.org/10.1016/j.cell.2017.09.019 ] [PMID: 28985563]
[36]
Romero-Garcia, S.; Moreno-Altamirano, M.M.B.; Prado-Garcia, H.; Sánchez-García, F.J. Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front. Immunol., 2016, 7, 52.
[http://dx.doi.org/10.3389/fimmu.2016.00052 ] [PMID: 26909082]
[37]
Lopes-Coelho, F.; Gouveia-Fernandes, S.; Serpa, J. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumour Biol., 2018, 40(2),1010428318756203.
[http://dx.doi.org/10.1177/1010428318756203 ] [PMID: 29421992]
[38]
Pavlides, S.; Whitaker-Menezes, D.; Castello-Cros, R.; Flo-menberg, N.; Witkiewicz, A.K.; Frank, P.G.; Casimiro, M.C.; Wang, C.; Fortina, P.; Addya, S.; Pestell, R.G. Mar-tinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. The reverse Warburg effect: aerobic glycolysis in cancer associated fibro-blasts and the tumor stroma. Cell Cycle, 2009, 8(23), 3984-4001.
[http://dx.doi.org/10.4161/cc.8.23.10238 ] [PMID: 19923890]
[39]
Pavlides, S.; Vera, I.; Gandara, R.; Sneddon, S.; Pestell, R.G.; Mercier, I.; Martinez-Outschoorn, U.E.; Whitaker-Menezes, D.; Howell, A.; Sotgia, F.; Lisanti, M.P. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid. Redox Signal., 2012, 16(11), 1264-1284.
[http://dx.doi.org/10.1089/ars.2011.4243 ] [PMID: 21883043]
[40]
Heller, A.; Brockhoff, G.; Goepferich, A. Targeting drugs to mitochondria. Eur. J. Pharm. Biopharm., 2012, 82(1), 1-18.
[http://dx.doi.org/10.1016/j.ejpb.2012.05.014 ] [PMID: 22687572]
[41]
Neuzil, J.; Vitamin, E. Vitamin E succinate and cancer treatment: a vitamin E prototype for selective antitumour activity. Br. J. Cancer, 2003, 89(10), 1822-1826.
[http://dx.doi.org/10.1038/sj.bjc.6601360 ] [PMID: 14612885]
[42]
Ralph, S.J.; Low, P.; Dong, L.; Lawen, A.; Neuzil, J. Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Recent Patents Anticancer Drug Discov., 2006, 1(3), 327-346.
[http://dx.doi.org/10.2174/157489206778776952 ] [PMID: 18221044]
[43]
Weber, T.; Lu, M.; Andera, L.; Lahm, H.; Gellert, N.W.; Fariss, M.; Korinek, V.; Sattler, W.S.; Ucker, D.; Terman, A. Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (Apo2 ligand) in vivo 2002, 8(3), 863-869.
[PMID: 11895920]
[44]
Patra, K.C.; Hay, N. Hexokinase 2 as oncotarget. Oncotarget, 2013, 4(11), 1862-1863.
[http://dx.doi.org/10.18632/oncotarget.1563 ] [PMID: 24196563]
[45]
Mathupala, S.P.; Rempel, A.; Pedersen, P.L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem., 2001, 276(46), 43407-43412.
[http://dx.doi.org/10.1074/jbc.M108181200 ] [PMID: 11557773]
[46]
Wolf, A.; Agnihotri, S.; Micallef, J.; Mukherjee, J.; Sabha, N.; Cairns, R.; Hawkins, C.; Guha, A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med., 2011, 208(2), 313-326.
[http://dx.doi.org/10.1084/jem.20101470 ] [PMID: 21242296]
[47]
Wang, W.; Liu, Z.; Zhao, L.; Sun, J.; He, Q.; Yan, W.; Lu, Z.; Wang, A. Hexokinase 2 enhances the metastatic potential of tongue squamous cell carcinoma via the SOD2-H2O2 pathway. Oncotarget, 2017, 8(2), 3344-3354.
[http://dx.doi.org/10.18632/oncotarget.13763 ] [PMID: 27926482]
[48]
Bustamante, E.; Morris, H.P.; Pedersen, P.L. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J. Biol. Chem., 1981, 256(16), 8699-8704.
[PMID: 7263678]
[49]
Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L. Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin. Cancer Biol., 2009, 19(1), 17-24.
[http://dx.doi.org/10.1016/j.semcancer.2008.11.006 ] [PMID: 19101634]
[50]
Pastorino, J.G.; Shulga, N.; Hoek, J.B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem., 2002, 277(9), 7610-7618.
[http://dx.doi.org/10.1074/jbc.M109950200 ] [PMID: 11751859]
[51]
Sajan, M.P.; Bandyopadhyay, G.; Miura, A.; Standaert, M.L.; Nimal, S.; Longnus, S.L.; Van Obberghen, E.; Hainault, I.; Foufelle, F.; Kahn, R.; Braun, U.; Leitges, M.; Farese, R.V. AICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC. Am. J. Physiol. Endocrinol. Metab., 2010, 298(2), E179-E192.
[http://dx.doi.org/10.1152/ajpendo.00392.2009 ] [PMID: 19887597]
[52]
Kristensen, J.M.; Treebak, J.T.; Schjerling, P.; Goodyear, L.; Wojtaszewski, J.F.P. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle. Am. J. Physiol. Endocrinol. Metab., 2014, 306(10), E1099-E1109.
[http://dx.doi.org/10.1152/ajpendo.00417.2013 ] [PMID: 24644243]
[53]
Bauman, A.E. Updating the evidence that physical activity is good for health: an epidemiological review 2000-2003. J. Sci. Med. Sport, 2004, 7(1)(Suppl.), 6-19.
[http://dx.doi.org/10.1016/S1440-2440(04)80273-1 ] [PMID: 15214597]
[54]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z ] [PMID: 28776086]
[55]
Bridges, H.R.; Jones, A.J.Y.; Pollak, M.N.; Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J., 2014, 462(3), 475-487.
[http://dx.doi.org/10.1042/BJ20140620 ] [PMID: 25017630]
[56]
Marini, C.; Salani, B.; Massollo, M.; Amaro, A.; Esposito, A.I.; Orengo, A.M.; Capitanio, S.; Emionite, L.; Riondato, M.; Bottoni, G.; Massara, C.; Boccardo, S.; Fabbi, M.; Campi, C.; Ravera, S.; Angelini, G.; Morbelli, S.; Cilli, M.; Cordera, R.; Truini, M.; Maggi, D.; Pfeffer, U.; Sambuceti, G. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle, 2013, 12(22), 3490-3499.
[http://dx.doi.org/10.4161/cc.26461 ] [PMID: 24240433]
[57]
Zhang, Q.; Zhang, Y.; Zhang, P.; Chao, Z.; Xia, F.; Jiang, C.; Zhang, X.; Jiang, Z.; Liu, H.; Hexokinase, I.I. Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells. Genes Cancer, 2014, 5(3-4), 100-112.
[PMID: 25053988]
[58]
Ho, N.; Morrison, J.; Silva, A.; Coomber, B.L. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci. Rep., 2016, 36(1), e00299-e00299.
[http://dx.doi.org/10.1042/BSR20150267 ] [PMID: 26740252]
[59]
Patra, K.C.; Wang, Q.; Bhaskar, P.T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W.J.; Allen, E.L.; Jha, A.K.; Smolen, G.A.; Clasquin, M.F.; Robey, B.; Hay, N. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell, 2013, 24(2), 213-228.
[http://dx.doi.org/10.1016/j.ccr.2013.06.014 ] [PMID: 23911236]
[60]
Weinberg, F.; Hamanaka, R.; Wheaton, W.W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, G.M.; Budinger, G.R.S.; Chandel, N.S. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA, 2010, 107(19), 8788-8793.
[http://dx.doi.org/10.1073/pnas.1003428107 ] [PMID: 20421486]
[61]
Huanan, W.; Wang, L.; Zhang, Y.; Wang, J.; Deng, Y.; Lin, D. Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth. Cancer Cell Int., 2016, 16, 9.
[http://dx.doi.org/10.1186/s12935-016-0280-y ] [PMID: 26884725]
[62]
Li, W.; Zheng, M.; Wu, S.; Gao, S.; Yang, M.; Li, Z.; Min, Q.; Sun, W.; Chen, L.; Xiang, G.; Li, H. Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J. Exp. Clin. Cancer Res., 2017, 36(1), 58.
[http://dx.doi.org/10.1186/s13046-017-0530-4 ] [PMID: 28427443]
[63]
Bonnet, S.; Archer, S.L.; Allalunis-Turner, J.; Haromy, A.; Beaulieu, C.; Thompson, R.; Lee, C.T.; Lopaschuk, G.D.; Puttagunta, L.; Bonnet, S.; Harry, G.; Hashimoto, K.; Porter, C.J.; Andrade, M.A.; Thebaud, B.; Michelakis, E.D. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 2007, 11(1), 37-51.
[http://dx.doi.org/10.1016/j.ccr.2006.10.020 ] [PMID: 17222789]
[64]
Ruggieri, V.; Agriesti, F.; Scrima, R.; Laurenzana, I.; Perrone, D.; Tataranni, T.; Mazzoccoli, C.; Lo Muzio, L.; Capitanio, N.; Piccoli, C. Dichloroacetate, a selective mitochondria-targeting drug for oral squamous cell carcinoma: a metabolic perspective of treatment. Oncotarget, 2015, 6(2), 1217-1230.
[http://dx.doi.org/10.18632/oncotarget.2721 ] [PMID: 25544754]
[65]
Sánchez-Aragó, M.; Chamorro, M.; Cuezva, J.M. Selection of cancer cells with repressed mitochondria triggers colon cancer progression. Carcinogenesis, 2010, 31(4), 567-576.
[http://dx.doi.org/10.1093/carcin/bgq012 ] [PMID: 20080835]
[66]
Stockwin, L.H.; Yu, S.X.; Borgel, S.; Hancock, C.; Wolfe, T.L.; Phillips, L.R.; Hollingshead, M.G.; Newton, D.L. Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC. Int. J. Cancer, 2010, 127(11), 2510-2519.
[http://dx.doi.org/10.1002/ijc.25499 ] [PMID: 20533281]
[67]
Madhok, B.M.; Yeluri, S.; Perry, S.L.; Hughes, T.A.; Jayne, D.G. Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br. J. Cancer, 2010, 102(12), 1746-1752.
[http://dx.doi.org/10.1038/sj.bjc.6605701 ] [PMID: 20485289]
[68]
Michelakis, E. D.; Sutendra, G.; Dromparis, P.; Webster, L.; Haromy, A.; Niven, E.; Maguire, C.; Gammer, T.-L.; Mackey, J. R.; Fulton, D. Metabolic modulation of glioblas-toma with dichloroacetate. Sci. Transl. Med, 2010, 2(31)31ra34-31ra34.
[http://dx.doi.org/10.1126/scitranslmed.3000677] [PMID: 20463368]
[69]
Ko, L.; Allalunis-Turner, J. Investigation on the mechanism of Dichloroacetate (DCA) induced apoptosis in breast cancer. J. Clin. Oncol., 2009, 27(15S), e14637-e14637.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.e14637 ]
[70]
Pajuelo-Reguera, D.; Alán, L.; Olejár, T.; Ježek, P. Dichloroacetate stimulates changes in the mitochondrial network morphology via partial mitophagy in human SH-SY5Y neuroblastoma cells. Int. J. Oncol., 2015, 46(6), 2409-2418.
[http://dx.doi.org/10.3892/ijo.2015.2953 ] [PMID: 25846762]
[71]
Miao, P.; Sheng, S.; Sun, X.; Liu, J.; Huang, G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life, 2013, 65(11), 904-910.
[http://dx.doi.org/10.1002/iub.1216 ] [PMID: 24265197]
[72]
Novoa, W.B.; Winer, A.D.; Glaid, A.J.; Schwert, G.W. Lactic dehydrogenase. V. Inhibition by oxamate and by oxalate. J. Biol. Chem., 1959, 234(5), 1143-1148.
[PMID: 13654335]
[73]
Ramanathan, A.; Wang, C.; Schreiber, S.L. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc. Natl. Acad. Sci. USA, 2005, 102(17), 5992-5997.
[http://dx.doi.org/10.1073/pnas.0502267102 ] [PMID: 15840712]
[74]
Zhao, Z.; Han, F.; Yang, S.; Wu, J.; Zhan, W. Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: involvement of the Akt-mTOR signaling pathway. Cancer Lett., 2015, 358(1), 17-26.
[http://dx.doi.org/10.1016/j.canlet.2014.11.046 ] [PMID: 25524555]
[75]
Zhai, X.; Yang, Y.; Wan, J.; Zhu, R.; Wu, Y. Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncol. Rep., 2013, 30(6), 2983-2991.
[http://dx.doi.org/10.3892/or.2013.2735 ] [PMID: 24064966]
[76]
Yang, Y.; Su, D.; Zhao, L.; Zhang, D.; Xu, J.; Wan, J.; Fan, S.; Chen, M. Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells. Oncotarget, 2014, 5(23), 11886-11896.
[http://dx.doi.org/10.18632/oncotarget.2620 ] [PMID: 25361010]
[77]
Liu, X.; Yang, Z.; Chen, Z.; Chen, R.; Zhao, D.; Zhou, Y.; Qiao, L. Effects of the suppression of lactate dehydrogenase A on the growth and invasion of human gastric cancer cells. Oncol. Rep., 2015, 33(1), 157-162.
[http://dx.doi.org/10.3892/or.2014.3600 ] [PMID: 25394466]
[78]
Stein, L.R.; Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab., 2012, 23(9), 420-428.
[http://dx.doi.org/10.1016/j.tem.2012.06.005 ] [PMID: 22819213]
[79]
Di Lisa, F.; Ziegler, M. Pathophysiological relevance of mitochondria in NAD(+) metabolism. FEBS Lett., 2001, 492(1-2), 4-8.
[http://dx.doi.org/10.1016/S0014-5793(01)02198-6 ] [PMID: 11248227]
[80]
Bell, E.L.; Klimova, T.A.; Eisenbart, J.; Moraes, C.T.; Murphy, M.P.; Budinger, G.R.S.; Chandel, N.S. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol., 2007, 177(6), 1029-1036.
[http://dx.doi.org/10.1083/jcb.200609074 ] [PMID: 17562787]
[81]
Chen, W.W.; Birsoy, K.; Mihaylova, M.M.; Snitkin, H.; Stasinski, I.; Yucel, B.; Bayraktar, E.C.; Carette, J.E.; Clish, C.B.; Brummelkamp, T.R.; Sabatini, D.D.; Sabatini, D.M. Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells. Cell Rep., 2014, 7(1), 27-34.
[http://dx.doi.org/10.1016/j.celrep.2014.02.046 ] [PMID: 24685140]
[82]
Geissler, A.; Krimmer, T.; Bömer, U.; Guiard, B.; Rassow, J.; Pfanner, N. Membrane potential-driven protein import into mitochondria. The sorting sequence of cytochrome B(2) modulates the deltapsi-dependence of translocation of the matrix-targeting sequence. Mol. Biol. Cell, 2000, 11(11), 3977-3991.
[http://dx.doi.org/10.1091/mbc.11.11.3977 ] [PMID: 11071921]
[83]
Chandel, N.S. Mitochondria as signaling organelles. BMC Biol., 2014, 12, 34.
[http://dx.doi.org/10.1186/1741-7007-12-34 ] [PMID: 24884669]
[84]
Wheaton, W.W.; Weinberg, S.E.; Hamanaka, R.B.; Sober-anes, S.; Sullivan, L.B.; Anso, E.; Glasauer, A.; Dufour, E.; Mutlu, G.M.; Budigner, G.S.; Chandel, N.S. Metformin in-hibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife, 2014, 3, e02242.
[http://dx.doi.org/10.7554/eLife.02242 ] [PMID: 24843020]
[85]
Han, Y.H.; Kim, S.H.; Kim, S.Z.; Park, W.H. Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncol. Rep., 2008, 20(3), 689-693.
[PMID: 18695925]
[86]
Wallace, D.C. Mitochondrial diseases in man and mouse. Science, 1999, 283(5407), 1482-1488.
[http://dx.doi.org/10.1126/science.283.5407.1482 ] [PMID: 10066162]
[87]
Fendt, S-M.; Bell, E.L.; Keibler, M.A.; Davidson, S.M.; Wirth, G.J.; Fiske, B.; Mayers, J.R.; Schwab, M.; Bellinger, G.; Csibi, A.; Patnaik, A.; Blouin, M.J.; Cantley, L.C.; Guarente, L.; Blenis, J.; Pollak, M.N.; Olumi, A.F.; Vander Heiden, M.G.; Stephanopoulos, G. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res., 2013, 73(14), 4429-4438.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0080 ] [PMID: 23687346]
[88]
Kwong, J.Q.; Henning, M.S.; Starkov, A.A.; Manfredi, G. The mitochondrial respiratory chain is a modulator of apoptosis. J. Cell Biol., 2007, 179(6), 1163-1177.
[http://dx.doi.org/10.1083/jcb.200704059 ] [PMID: 18086914]
[89]
Lemarie, A.; Grimm, S. Mitochondrial respiratory chain complexes: apoptosis sensors mutated in cancer? Oncogene, 2011, 30(38), 3985-4003.
[http://dx.doi.org/10.1038/onc.2011.167 ] [PMID: 21625217]
[90]
Garrido, C.; Kroemer, G. Life’s smile, death’s grin: vital functions of apoptosis-executing proteins. Curr. Opin. Cell Biol., 2004, 16(6), 639-646.
[http://dx.doi.org/10.1016/j.ceb.2004.09.008 ] [PMID: 15530775]
[91]
Liemburg-Apers, D.C.; Willems, P.H.G.M.; Koopman, W.J.H.; Grefte, S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch. Toxicol., 2015, 89(8), 1209-1226.
[http://dx.doi.org/10.1007/s00204-015-1520-y ] [PMID: 26047665]
[92]
Liou, G-Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[http://dx.doi.org/10.3109/10715761003667554 ] [PMID: 20370557]
[93]
Wolvetang, E.J.; Johnson, K.L.; Krauer, K.; Ralph, S.J.; Linnane, A.W. Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett., 1994, 339(1-2), 40-44.
[http://dx.doi.org/10.1016/0014-5793(94)80380-3 ] [PMID: 8313978]
[94]
Li, N.; Ragheb, K.; Lawler, G.; Sturgis, J.; Rajwa, B.; Melendez, J.A.; Robinson, J.P. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem., 2003, 278(10), 8516-8525.
[http://dx.doi.org/10.1074/jbc.M210432200 ] [PMID: 12496265]
[95]
Pelicano, H.; Feng, L.; Zhou, Y.; Carew, J.S.; Hileman, E.O.; Plunkett, W.; Keating, M.J.; Huang, P. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J. Biol. Chem., 2003, 278(39), 37832-37839.
[http://dx.doi.org/10.1074/jbc.M301546200 ] [PMID: 12853461]
[96]
Choi, W-S.; Palmiter, R.D.; Xia, Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J. Cell Biol., 2011, 192(5), 873-882.
[http://dx.doi.org/10.1083/jcb.201009132 ] [PMID: 21383081]
[97]
Palorini, R.; Simonetto, T.; Cirulli, C.; Chiaradonna, F. Mitochondrial complex I inhibitors and forced oxidative phosphorylation synergize in inducing cancer cell death. Int. J. Cell Biol., 2013, 2013,243876.
[http://dx.doi.org/10.1155/2013/243876 ] [PMID: 23690779]
[98]
Hail, N.; Lotan, R. Apoptosis induction by the natural product cancer chemopreventive agent deguelin is mediated through the inhibition of mitochondrial bioenergetics. Apoptosis, 2004, 9(4), 437-447.
[http://dx.doi.org/10.1023/B:APPT.0000031449.57551.e1 ] [PMID: 15192326]
[99]
Buzzai, M.; Jones, R.G.; Amaravadi, R.K.; Lum, J.J.; DeBerardinis, R.J.; Zhao, F.; Viollet, B.; Thompson, C.B. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res., 2007, 67(14), 6745-6752.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4447 ] [PMID: 17638885]
[100]
de Mey, S.; Jiang, H.; Corbet, C.; Wang, H.; Dufait, I.; Law, K.; Bastien, E.; Verovski, V.; Gevaert, T.; Feron, O.; De Ridder, M. Antidiabetic biguanides radiosensitize hypoxic colorectal cancer cells through a decrease in oxygen consumption. Front. Pharmacol., 2018, 9, 1073.
[http://dx.doi.org/10.3389/fphar.2018.01073 ] [PMID: 30337872]
[101]
Pan, J.; Lee, Y.; Cheng, G.; Zielonka, J.; Zhang, Q.; Ba-jzikova, M.; Xiong, D.; Tsaih, S.-W.; Hardy, M.; Flister, M. M. Mitochondria-targeted Honokiol confers a striking inhibitory effect on lung cancer via inhibiting complex I activity. iScience, 2018, 3, 192-207.
[http://dx.doi.org/10.1016/j.isci.2018.04.013] [PMID: 30428319]
[102]
Oberlies, N.H.; Croy, V.L.; Harrison, M.L.; McLaughlin, J.L. The annonaceous acetogenin bullatacin is cytotoxic against multidrug-resistant human mammary adenocarcinoma cells. Cancer Lett., 1997, 115(1), 73-79.
[http://dx.doi.org/10.1016/S0304-3835(97)04716-2 ] [PMID: 9097981]
[103]
Zhang, B.; Chu, W.; Wei, P.; Liu, Y.; Wei, T. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic. Biol. Med., 2015, 89, 486-497.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.021 ] [PMID: 26453927]
[104]
Kovarova, J.; Bajzikova, M.; Vondrusova, M.; Stursa, J.; Goodwin, J.; Nguyen, M.; Zobalova, R.; Alizadeh, E.; Truksa, J.; Tomasetti, M. Mitochondrial targeting of α-tocopheryl succinate enhances its anti-mesothelioma efficacy. Redox Rep., 2014, 19(1), 16-25.
[http://dx.doi.org/10.1179/1351000213Y.0000000064 ] [PMID: 24225203]
[105]
Dong, L-F.; Freeman, R.; Liu, J.; Zobalova, R.; Marin-Hernandez, A.; Stantic, M.; Rohlena, J.; Valis, K. Rodri-guez-Enriquez, S.; Butcher, B. Suppression of tumor growth in vivo by the mitocan α-tocopheryl succinate requires respiratory complex II. Clin. Cancer Res., 2009, 15(5), 1593-1600.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2439]
[106]
Dong, L.J.A.; Jameson, V.; Tilly, D.; Černý, J.; Mahdavian, E.; Marin, A.; Hernández-Esquivel, L.; Rodriguez-Enriquez, S.; Stursa, J.; Witting, P. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem., 2011, 286(5), 3717-3728.
[http://dx.doi.org/10.1074/jbc.M110.186643 ] [PMID: 21059645]
[107]
Paranagama, M.; Kita, K. Differential effect of Atpenin A5 on ROS production from wild- type mitochondrial complex II in human cancer cells and normal cells; Intech Open, 2018.
[http://dx.doi.org/10.5772/intechopen.71638]
[108]
Guo, L.; Shestov, A.; Worth, A.; Nath, K.; Nelson, D.; Leeper, B.D.; Glickson, J.; Blair, I. Inhibition of mitochondrial complex II by the anticancer agent lonidamine. J. Biol. Chem., 2015, 291(1), 42-57.
[http://dx.doi.org/10.1074/jbc.M115.697516 ] [PMID: 26521302]
[109]
Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S.J.; Gibson, S.B. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J. Cell Sci., 2007, 120(Pt 23), 4155-4166.
[http://dx.doi.org/10.1242/jcs.011163 ] [PMID: 18032788]
[110]
Bhattacharya, K.; Bag, K. Mahanine, a novel mitochondrial complex-III inhibitor induces G0/G1 arrest through redox alteration-mediated DNA damage response and regresses glioblastoma multiforme. Am. J. Cancer Res., 2014, 4(6), 629-647.
[PMID: 25520856]
[111]
Fiorillo, M.; Lamb, R.; Tanowitz, H.B.; Mutti, L.; Krstic-Demonacos, M.; Cappello, A.R.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget, 2016, 7(23), 34084-34099.
[http://dx.doi.org/10.18632/oncotarget.9122 ] [PMID: 27136895]
[112]
Xiao, D.; Powolny, A.A.; Singh, S.V. Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger reactive oxygen species-dependent apoptosis in human breast cancer cells. J. Biol. Chem., 2008, 283(44), 30151-30163.
[http://dx.doi.org/10.1074/jbc.M802529200 ] [PMID: 18768478]
[113]
Le, S.B.; Hailer, M.K.; Buhrow, S.; Wang, Q.; Flatten, K.; Pediaditakis, P.; Bible, K.C.; Lewis, L.D.; Sausville, E.A.; Pang, Y-P.; Ames, M.M.; Lemasters, J.J.; Holmuhamedov, E.L.; Kaufmann, S.H. Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J. Biol. Chem., 2007, 282(12), 8860-8872.
[http://dx.doi.org/10.1074/jbc.M611777200 ] [PMID: 17213201]
[114]
Kwang Kim, K.; Abelman, S.; Yano, N.; Ribeiro, J.; Singh, K. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1α in cancer cells. Sci. Rep., 2015, 5, 14296.
[http://dx.doi.org/10.1038/srep14296 ] [PMID: 26469226]
[115]
Cuperus, R.; Leen, R.; Tytgat, G.A.M.; Caron, H.N.; van Kuilenburg, A.B.P. Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma. Cell. Mol. Life Sci., 2010, 67(5), 807-816.
[http://dx.doi.org/10.1007/s00018-009-0212-2 ] [PMID: 19941060]
[116]
Huang, T-C.; Chang, H-Y.; Hsu, C-H.; Kuo, W-H.; Chang, K-J.; Juan, H-F. Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J. Proteome Res., 2008, 7(4), 1433-1444.
[http://dx.doi.org/10.1021/pr700742h ] [PMID: 18275135]
[117]
Salomon, A.R.; Voehringer, D.W.; Herzenberg, L.A.; Khosla, C. Apoptolidin, a selective cytotoxic agent, is an inhibitor of F0F1-ATPase. Chem. Biol., 2001, 8(1), 71-80.
[http://dx.doi.org/10.1016/S1074-5521(00)00057-0 ] [PMID: 11182320]
[118]
Gong, Y.; Sohn, H.; Xue, L.; Firestone, G.L.; Bjeldanes, L.F. 3,3′-Diindolylmethane is a novel mitochondrial H+-ATP synthase inhibitor that can induce P21Cip1/Waf1 expression by induction of oxidative stress in human breast cancer cells. Cancer Res., 2006, 66(9), 4880-4887.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4162 ] [PMID: 16651444]
[119]
Um, H-D. Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: a review focusing on mitochondrial respiration and reactive oxygen species. Oncotarget, 2016, 7(5), 5193-5203.
[http://dx.doi.org/10.18632/oncotarget.6405 ] [PMID: 26621844]
[120]
Dey, R.; Moraes, C.T. Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J. Biol. Chem., 2000, 275(10), 7087-7094.
[http://dx.doi.org/10.1074/jbc.275.10.7087 ] [PMID: 10702275]
[121]
Manfredi, G.; Kwong, J.Q.; Oca-Cossio, J.A.; Woischnik, M.; Gajewski, C.D.; Martushova, K.; D’Aurelio, M.; Friedlich, A.L.; Moraes, C.T. BCL-2 improves oxidative phosphorylation and modulates adenine nucleotide translocation in mitochondria of cells harboring mutant mtDNA. J. Biol. Chem., 2003, 278(8), 5639-5645.
[http://dx.doi.org/10.1074/jbc.M203080200 ] [PMID: 12431997]
[122]
Kim, E.M.; Park, J.K.; Hwang, S-G.; Kim, W-J.; Liu, Z-G.; Kang, S.W.; Um, H-D. Nuclear and cytoplasmic p53 suppress cell invasion by inhibiting respiratory complex-I activity via Bcl-2 family proteins. Oncotarget, 2014, 5(18), 8452-8465.
[http://dx.doi.org/10.18632/oncotarget.2320 ] [PMID: 25115399]
[123]
Youle, R.J.; Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 47-59.
[http://dx.doi.org/10.1038/nrm2308 ] [PMID: 18097445]
[124]
Kang, M.H.; Reynolds, C.P. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res., 2009, 15(4), 1126-1132.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0144 ] [PMID: 19228717]
[125]
Shangary, S.; Oliver, C.L.; Tillman, T.S.; Cascio, M.; Johnson, D.E. Sequence and helicity requirements for the proapoptotic activity of Bax BH3 peptides. Mol. Cancer Ther., 2004, 3(11), 1343-1354.
[PMID: 15542773]
[126]
Kuwana, T.; Bouchier-Hayes, L.; Chipuk, J.E.; Bonzon, C.; Sullivan, B.A.; Green, D.R.; Newmeyer, D.D. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell, 2005, 17(4), 525-535.
[http://dx.doi.org/10.1016/j.molcel.2005.02.003 ] [PMID: 15721256]
[127]
Letai, A.; Bassik, M.C.; Walensky, L.D.; Sorcinelli, M.D.; Weiler, S.; Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2002, 2(3), 183-192.
[http://dx.doi.org/10.1016/S1535-6108(02)00127-7 ] [PMID: 12242151]
[128]
Denicourt, C.; Dowdy, S.F. Medicine. Targeting apoptotic pathways in cancer cells. Science, 2004, 305(5689), 1411-1413.
[http://dx.doi.org/10.1126/science.1102974 ] [PMID: 15353788]
[129]
Tzung, S.P.; Kim, K.M.; Basañez, G.; Giedt, C.D.; Simon, J.; Zimmerberg, J.; Zhang, K.Y.; Hockenbery, D.M. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat. Cell Biol., 2001, 3(2), 183-191.
[http://dx.doi.org/10.1038/35055095 ] [PMID: 11175751]
[130]
An, J.; Chen, Y.; Huang, Z. Critical upstream signals of cytochrome C release induced by a novel Bcl-2 inhibitor. J. Biol. Chem., 2004, 279(18), 19133-19140.
[http://dx.doi.org/10.1074/jbc.M400295200 ] [PMID: 14966123]
[131]
Milanesi, E.; Costantini, P.; Gambalunga, A.; Colonna, R.; Petronilli, V.; Cabrelle, A.; Semenzato, G.; Cesura, A.M.; Pinard, E.; Bernardi, P. The mitochondrial effects of small organic ligands of BCL-2: sensitization of BCL-2-overexpressing cells to apoptosis by a pyrimidine-2,4,6-trione derivative. J. Biol. Chem., 2006, 281(15), 10066-10072.
[http://dx.doi.org/10.1074/jbc.M513708200 ] [PMID: 16481323]
[132]
Milella, M.; Estrov, Z.; Kornblau, S.M.; Carter, B.Z.; Konopleva, M.; Tari, A.; Schober, W.D.; Harris, D.; Leysath, C.E.; Lopez-Berestein, G.; Huang, Z.; Andreeff, M. Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood, 2002, 99(9), 3461-3464.
[http://dx.doi.org/10.1182/blood.V99.9.3461 ] [PMID: 11964319]
[133]
Pei, X-Y.; Dai, Y.; Grant, S. The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia, 2003, 17(10), 2036-2045.
[http://dx.doi.org/10.1038/sj.leu.2403109 ] [PMID: 14513055]
[134]
Dai, Y.; Rahmani, M.; Corey, S.J.; Dent, P.; Grant, S.A. Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J. Biol. Chem., 2004, 279(33), 34227-34239.
[http://dx.doi.org/10.1074/jbc.M402290200 ] [PMID: 15175350]
[135]
An, J.; Chervin, A.S.; Nie, A.; Ducoff, H.S.; Huang, Z. Overcoming the radioresistance of prostate cancer cells with a novel Bcl-2 inhibitor. Oncogene, 2007, 26(5), 652-661.
[http://dx.doi.org/10.1038/sj.onc.1209830 ] [PMID: 16909121]
[136]
Oliver, L.; Mahé, B.; Gréé, R.; Vallette, F.M.; Juin, P. HA14-1, a small molecule inhibitor of Bcl-2, bypasses chemoresistance in Leukaemia cells. Leuk. Res., 2007, 31(6), 859-863.
[http://dx.doi.org/10.1016/j.leukres.2006.11.010 ] [PMID: 17224180]
[137]
Degterev, A.; Lugovskoy, A.; Cardone, M.; Mulley, B.; Wagner, G.; Mitchison, T.; Yuan, J. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat. Cell Biol., 2001, 3(2), 173-182.
[http://dx.doi.org/10.1038/35055085 ] [PMID: 11175750]
[138]
Feng, W-Y.; Liu, F-T.; Patwari, Y.; Agrawal, S.G.; Newland, A.C.; Jia, L. BH3-domain mimetic compound BH3I-2′ induces rapid damage to the inner mitochondrial membrane prior to the cytochrome c release from mitochondria. Br. J. Haematol., 2003, 121(2), 332-340.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04268.x ] [PMID: 12694257]
[139]
Ray, S.; Bucur, O.; Almasan, A. Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor. Apoptosis, 2005, 10(6), 1411-1418.
[http://dx.doi.org/10.1007/s10495-005-2490-y ] [PMID: 16215673]
[140]
Hao, J-H.; Yu, M.; Liu, F-T.; Newland, A.C.; Jia, L. Bcl-2 inhibitors sensitize tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by uncoupling of mitochondrial respiration in human leukemic CEM cells. Cancer Res., 2004, 64(10), 3607-3616.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3648 ] [PMID: 15150119]
[141]
Real, P.J.; Cao, Y.; Wang, R.; Nikolovska-Coleska, Z.; Sanz-Ortiz, J.; Wang, S.; Fernandez-Luna, J.L. Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. Cancer Res., 2004, 64(21), 7947-7953.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0945 ] [PMID: 15520201]
[142]
Paoluzzi, L.; Gonen, M.; Gardner, J.R.; Mastrella, J.; Yang, D.; Holmlund, J.; Sorensen, M.; Leopold, L.; Manova, K.; Marcucci, G.; Heaney, M.L.; O’Connor, O.A. Targeting Bcl-2 family members with the BH3 mimetic AT-101 markedly enhances the therapeutic effects of chemotherapeutic agents in in vitro and in vivo models of B-cell lymphoma. Blood, 2008, 111(11), 5350-5358.
[http://dx.doi.org/10.1182/blood-2007-12-129833 ] [PMID: 18292288]
[143]
Wolter, K.G.; Wang, S.J.; Henson, B.S.; Wang, S.; Griffith, K.A.; Kumar, B.; Chen, J.; Carey, T.E.; Bradford, C.R.; D’Silva, N.J. (-)-gossypol inhibits growth and promotes apoptosis of human head and neck squamous cell carcinoma in vivo. Neoplasia, 2006, 8(3), 163-172.
[http://dx.doi.org/10.1593/neo.05691 ] [PMID: 16611409]
[144]
Ko, C-H.; Shen, S-C.; Yang, L-Y.; Lin, C-W.; Chen, Y-C. Gossypol reduction of tumor growth through ROS-dependent mitochondria pathway in human colorectal carcinoma cells. Int. J. Cancer, 2007, 121(8), 1670-1679.
[http://dx.doi.org/10.1002/ijc.22910 ] [PMID: 17597109]
[145]
Kitada, S.; Leone, M.; Sareth, S.; Zhai, D.; Reed, J.C.; Pellecchia, M. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J. Med. Chem., 2003, 46(20), 4259-4264.
[http://dx.doi.org/10.1021/jm030190z ] [PMID: 13678404]
[146]
Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000.
[http://dx.doi.org/10.1038/nrd2658 ] [PMID: 19043450]
[147]
Xu, L.; Yang, D.; Wang, S.; Tang, W.; Liu, M.; Davis, M.; Chen, J.; Rae, J.M.; Lawrence, T.; Lippman, M.E. (-)-Gossypol enhances response to radiation therapy and results in tumor regression of human prostate cancer. Mol. Cancer Ther., 2005, 4(2), 197-205.
[PMID: 15713891]
[148]
Mohammad, R.M.; Wang, S.; Banerjee, S.; Wu, X.; Chen, J.; Sarkar, F.H. Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL, (-)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line. Pancreas, 2005, 31(4), 317-324.
[http://dx.doi.org/10.1097/01.mpa.0000179731.46210.01 ] [PMID: 16258364]
[149]
Zhang, M.; Liu, H.; Tian, Z.; Huang, J.; Remo, M.; Li, Q.Q. Differential growth inhibition and induction of apoptosis by gossypol between HCT116 and HCT116/Bax(-/-) colorectal cancer cells. Clin. Exp. Pharmacol. Physiol., 2007, 34(3), 230-237.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04577.x ] [PMID: 17250644]
[150]
Oliver, C.L.; Bauer, J.A.; Wolter, K.G.; Ubell, M.L.; Narayan, A.; O’Connell, K.M.; Fisher, S.G.; Wang, S.; Wu, X.; Ji, M.; Carey, T.E.; Bradford, C.R. In vitro effects of the BH3 mimetic, (-)-gossypol, on head and neck squamous cell carcinoma cells. Clin. Cancer Res., 2004, 10(22), 7757-7763.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0551 ] [PMID: 15570010]
[151]
Liu, G.; Kelly, W.K.; Wilding, G.; Leopold, L.; Brill, K.; Somer, B. An open-label, multicenter, phase I/II study of single-agent AT-101 in men with castrate-resistant prostate cancer. Clin. Cancer Res., 2009, 15(9), 3172-3176.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2985 ] [PMID: 19366825]
[152]
Van Poznak, C.; Seidman, A.D.; Reidenberg, M.M.; Moasser, M.M.; Sklarin, N.; Van Zee, K.; Borgen, P.; Gollub, M.; Bacotti, D.; Yao, T.J.; Bloch, R.; Ligueros, M.; Sonenberg, M.; Norton, L.; Hudis, C. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res. Treat., 2001, 66(3), 239-248.
[http://dx.doi.org/10.1023/A:1010686204736 ] [PMID: 11510695]
[153]
Verhaegen, M.; Bauer, J.A.; Martín de la Vega, C.; Wang, G.; Wolter, K.G.; Brenner, J.C.; Nikolovska-Coleska, Z.; Bengtson, A.; Nair, R.; Elder, J.T.; Van Brocklin, M.; Carey, T.E.; Bradford, C.R.; Wang, S.; Soengas, M.S. A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res., 2006, 66(23), 11348-11359.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1748 ] [PMID: 17145881]
[154]
Mohammad, R.M.; Goustin, A.S.; Aboukameel, A.; Chen, B.; Banerjee, S.; Wang, G.; Nikolovska-Coleska, Z.; Wang, S.; Al-Katib, A. Preclinical studies of TW-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1. Clin. Cancer Res., 2007, 13(7), 2226-2235.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1574 ] [PMID: 17404107]
[156]
Bernardi, P.; Rasola, A.; Forte, M.; Lippe, G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol. Rev., 2015, 95(4), 1111-1155.
[http://dx.doi.org/10.1152/physrev.00001.2015 ] [PMID: 26269524]
[157]
Zheng, Y.; Shi, Y.; Tian, C.; Jiang, C.; Jin, H.; Chen, J.; Almasan, A.; Tang, H.; Chen, Q. Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene, 2004, 23(6), 1239-1247.
[http://dx.doi.org/10.1038/sj.onc.1207205 ] [PMID: 14647451]
[158]
Larochette, N.; Decaudin, D.; Jacotot, E.; Brenner, C.; Marzo, I.; Susin, S.A.; Zamzami, N.; Xie, Z.; Reed, J.; Kroemer, G. Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp. Cell Res., 1999, 249(2), 413-421.
[http://dx.doi.org/10.1006/excr.1999.4519 ] [PMID: 10366441]
[159]
Costantini, P.; Belzacq, A.S.; Vieira, H.L.; Larochette, N.; de Pablo, M.A.; Zamzami, N.; Susin, S.A.; Brenner, C.; Kroemer, G. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene, 2000, 19(2), 307-314.
[http://dx.doi.org/10.1038/sj.onc.1203299 ] [PMID: 10645010]
[160]
Madesh, M.; Hajnóczky, G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J. Cell Biol., 2001, 155(6), 1003-1015.
[http://dx.doi.org/10.1083/jcb.200105057 ] [PMID: 11739410]
[161]
McStay, G.P.; Clarke, S.J.; Halestrap, A.P. Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem. J., 2002, 367(Pt 2), 541-548.
[http://dx.doi.org/10.1042/bj20011672 ] [PMID: 12149099]
[162]
Don, A.S.; Kisker, O.; Dilda, P.; Donoghue, N.; Zhao, X.; Decollogne, S.; Creighton, B.; Flynn, E.; Folkman, J.; Hogg, P.J. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell, 2003, 3(5), 497-509.
[http://dx.doi.org/10.1016/S1535-6108(03)00109-0 ] [PMID: 12781367]
[163]
Fulda, S.; Scaffidi, C.; Susin, S.A.; Krammer, P.H.; Kroemer, G.; Peter, M.E.; Debatin, K.M. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J. Biol. Chem., 1998, 273(51), 33942-33948.
[http://dx.doi.org/10.1074/jbc.273.51.33942 ] [PMID: 9852046]
[164]
Zuco, V.; Supino, R.; Righetti, S.C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett., 2002, 175(1), 17-25.
[http://dx.doi.org/10.1016/S0304-3835(01)00718-2 ] [PMID: 11734332]
[165]
Soica, C.M.; Dehelean, C.A.; Peev, C.; Aluas, M.; Zupkó, I.; Kása, P., Jr; Alexa, E. Physico-chemical comparison of betulinic acid, betulin and birch bark extract and in vitro investigation of their cytotoxic effects towards skin epidermoid carcinoma (A431), breast carcinoma (MCF7) and cervix adenocarcinoma (HeLa) cell lines. Nat. Prod. Res., 2012, 26(10), 968-974.
[http://dx.doi.org/10.1080/14786419.2010.545352 ] [PMID: 21598174]
[166]
Soica, C.; Danciu, C.; Savoiu-Balint, G.; Borcan, F.; Ambrus, R.; Zupko, I.; Bojin, F.; Coricovac, D.; Ciurlea, S.; Avram, S.; Dehelean, C.A.; Olariu, T.; Matusz, P. Betulinic acid in complex with a gamma-cyclodextrin derivative decreases proliferation and in vivo tumor development of non-metastatic and metastatic B164A5 cells. Int. J. Mol. Sci., 2014, 15(5), 8235-8255.
[http://dx.doi.org/10.3390/ijms15058235 ] [PMID: 24821543]
[167]
Ren, W.; Qin, L.; Xu, Y.; Cheng, N. Inhibition of betulinic acid to growth and angiogenesis of human colorectal cancer cell in nude mice. Chin. -. Ger. J. Clin. Oncol., 2010, 9, 153-157.
[http://dx.doi.org/10.1007/s10330-010-0002-1]
[168]
Gheorgheosu, D.; Duicu, O.; Dehelean, C.; Soica, C.; Muntean, D. Betulinic acid as a potent and complex antitumor phytochemical: a minireview. Anticancer. Agents Med. Chem., 2014, 14(7), 936-945.
[http://dx.doi.org/10.2174/1871520614666140223192148 ] [PMID: 24568161]
[169]
Cichewicz, R.H.; Kouzi, S.A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev., 2004, 24(1), 90-114.
[http://dx.doi.org/10.1002/med.10053 ] [PMID: 14595673]
[170]
Mullauer, F.B.; Kessler, J.H.; Medema, J.P. Betulinic acid, a natural compound with potent anticancer effects. Anticancer Drugs, 2010, 21(3), 215-227.
[http://dx.doi.org/10.1097/CAD.0b013e3283357c62 ] [PMID: 20075711]
[171]
Dehelean, C.A.; Soica, C.; Peev, C.; Ciurlea, S.; Feflea, S.; Kasa, P. A pharmaco-toxicological evaluation of betulinic acid mixed with hydroxipropilgamma cyclodextrin on in vitro and in vivo models. Farmacia, 2011, 59(1)
[172]
Dehelean, C.A.; Soica, C.; Peev, C.; Gruia, A.T.; Seclaman, E. Physico-chemical and molecular analysis of antitumoral pentacyclic triterpenes in complexation with gamma-cyclodextrin. Rev. Chim, 2008, 59(8), 887-890.
[173]
Şoica, C.M.; Dehelean, C.A.; Peev, C.I.; Coneac, G.; Gruia, A.T. Complexation with hydroxypropyl-γ-cyclodextrin of some pentacyclic triterpenes. Characterisation of their binary products. Farmacia, 2008, 56(2), 182-190.
[174]
Şoica, C.M.; Peev, C.I.; Ciurlea, S.; Ambrus, R.; Dehelean, C. Physico-chemical and toxicological evaluations of betulin and betulinic acid interactions with hydrophilic cyclodextrins. Farmacia, 2010, 58(5), 611-619.
[175]
Wang, H.M.H.M.; Şoica, C.M.; Wenz, G.; Soica, C.M.; Wenz, G. A comparison investigation on the solubilization of betulin and betulinic acid in cyclodextrin derivatives. Nat. Prod. Commun., 2012, 7(3), 289-291.
[http://dx.doi.org/10.1177/1934578X1200700304 ] [PMID: 22545397]
[176]
Starkov, A.A. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci., 2008, 1147, 37-52.
[http://dx.doi.org/10.1196/annals.1427.015 ] [PMID: 19076429]
[177]
Stojnev, S.; Ristić-Petrović, A.; Janković-Velicković, L. Reactive oxygen species, apoptosis and cancer. Vojnosanit. Pregl., 2013, 70(7), 675-678.
[http://dx.doi.org/10.2298/VSP1307675S ] [PMID: 23984617]
[178]
Gibellini, L.; Pinti, M.; Nasi, M.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cossarizza, A. Interfering with ROS metabolism in cancer cells: the potential role of quercetin. Cancers (Basel), 2010, 2(2), 1288-1311.
[http://dx.doi.org/10.3390/cancers2021288 ] [PMID: 24281116]
[179]
Wang, J.; Yi, J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol. Ther., 2008, 7(12), 1875-1884.
[http://dx.doi.org/10.4161/cbt.7.12.7067 ] [PMID: 18981733]
[180]
Prakash, M.; Shetty, M.S.; Tilak, P.; Anwar, N. Total thiols: biomedical importance and their alteration in various disorders. Online J. Health Allied Sci., 2009, 8(2)
[181]
Ortega, A.L.; Mena, S.; Estrela, J.M. Glutathione in cancer cell death. Cancers (Basel), 2011, 3(1), 1285-1310.
[http://dx.doi.org/10.3390/cancers3011285 ] [PMID: 24212662]
[182]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706 ] [PMID: 11902585]
[183]
Moraes, V.; Caires, C.F.; Paredes-Gamero, E.; Rodrigues, T. Organopalladium compound 7b targets mitochondrial thiols and induces caspase-dependent apoptosis in human myeloid leukemia cells. Cell Death Dis., 2013, 4(6)e658
[http://dx.doi.org/10.1038/cddis.2013.190 ] [PMID: 23744358]
[184]
Lu, J.; Chew, E-H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 2007, 104(30), 12288-12293.
[http://dx.doi.org/10.1073/pnas.0701549104 ] [PMID: 17640917]
[185]
Subbarayan, P.R.; Ardalan, B. In the war against solid tumors arsenic trioxide needs partners. J. Gastrointest. Cancer, 2014, 45(3), 363-371.
[http://dx.doi.org/10.1007/s12029-014-9617-8 ] [PMID: 24825822]
[186]
US National Library of Medicine. Available at: https://www.clinicaltrials.gov
[187]
Chen, G.; Chen, Z.; Hu, Y.; Huang, P. Inhibition of mitochondrial respiration and rapid depletion of mitochondrial glutathione by β-phenethyl isothiocyanate: mechanisms for anti-leukemia activity. Antioxid. Redox Signal., 2011, 15(12), 2911-2921.
[http://dx.doi.org/10.1089/ars.2011.4170 ] [PMID: 21827296]
[188]
Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; Schreier, P.H.; Smith, A.J.; Staden, R.; Young, I.G. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290(5806), 457-465.
[http://dx.doi.org/10.1038/290457a0 ] [PMID: 7219534]
[189]
Moraes, C.T.; Srivastava, S.; Kirkinezos, I.; Oca-Cossio, J.; van Waveren, C.; Woischnick, M.; Diaz, F. Mitochondrial DNA structure and function. Int. Rev. Neurobiol., 2002, 53, 3-23.
[http://dx.doi.org/10.1016/S0074-7742(02)53002-6 ] [PMID: 12512335]
[190]
Chinnery, P.F. Mitochondrial Disorders Overview in: Gene Reviews. Adam, M.P.; Ardinger, H.H.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Stephens, K; Amemiya, A., Ed.; (Eds.), Seattle, 1993.
[PMID: 20301403]
[191]
Jessie, B.C.; Sun, C.Q.; Irons, H.R.; Marshall, F.F.; Wallace, D.C.; Petros, J.A. Accumulation of mitochondrial DNA deletions in the malignant prostate of patients of different ages. Exp. Gerontol., 2001, 37(1), 169-174.
[http://dx.doi.org/10.1016/S0531-5565(01)00153-X ] [PMID: 11738157]
[192]
Tan, D-J.; Bai, R-K.; Wong, L-J.C. Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res., 2002, 62(4), 972-976.
[PMID: 11861366]
[193]
Nomoto, S.; Sanchez-Cespedes, M.; Sidransky, D. Identification of mtDNA mutations in human cancer. Methods Mol. Biol., 2002, 197, 107-117.
[http://dx.doi.org/10.1385/1-59259-284-8:107 ] [PMID: 12013789]
[194]
Polyak, K.; Li, Y.; Zhu, H.; Lengauer, C.; Willson, J.K.; Markowitz, S.D.; Trush, M.A.; Kinzler, K.W.; Vogelstein, B. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet., 1998, 20(3), 291-293.
[http://dx.doi.org/10.1038/3108 ] [PMID: 9806551]
[195]
Zhao, Y-B.; Yang, H-Y.; Zhang, X-W.; Chen, G-Y. Mutation in D-loop region of mitochondrial DNA in gastric cancer and its significance. World J. Gastroenterol., 2005, 11(21), 3304-3306.
[http://dx.doi.org/10.3748/wjg.v11.i21.3304 ] [PMID: 15929189]
[196]
Larman, T.C.; DePalma, S.R.; Hadjipanayis, A.G.; Protopopov, A.; Zhang, J.; Gabriel, S.B.; Chin, L.; Seidman, C.E.; Kucherlapati, R.; Seidman, J.G. Spectrum of somatic mitochondrial mutations in five cancers. Proc. Natl. Acad. Sci. USA, 2012, 109(35), 14087-14091.
[http://dx.doi.org/10.1073/pnas.1211502109 ] [PMID: 22891333]
[197]
Lorenc, A.; Bryk, J.; Bartnik, E. Mitochondrial DNA in tumors. Toxicol. Mech. Methods, 2004, 14(1-2), 85-90.
[http://dx.doi.org/10.1080/15376520490257563 ] [PMID: 20021129]
[198]
Lawrence, J.W.; Claire, D.C.; Weissig, V.; Rowe, T.C. Delayed cytotoxicity and cleavage of mitochondrial DNA in ciprofloxacin-treated mammalian cells. Mol. Pharmacol., 1996, 50(5), 1178-1188.
[PMID: 8913349]
[199]
Baldwin, E.L.; Osheroff, N. Etoposide, topoisomerase II and cancer. Curr. Med. Chem. Anticancer Agents, 2005, 5(4), 363-372.
[http://dx.doi.org/10.2174/1568011054222364 ] [PMID: 16101488]
[200]
Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A.K.; Kumar, R.; Wang, J.; O’Malley, J.; Boland, P.M.; Jayanthi, S.; Kumar, T.K.S.; Yadava, N.; Chandra, D. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis., 2015, 6(11), e1969-e1969.
[http://dx.doi.org/10.1038/cddis.2015.305 ] [PMID: 26539916]
[201]
Robertson, J.D.; Gogvadze, V.; Zhivotovsky, B.; Orrenius, S. Distinct pathways for stimulation of cytochrome c release by etoposide. J. Biol. Chem., 2000, 275(42), 32438-32443.
[http://dx.doi.org/10.1074/jbc.C000518200 ] [PMID: 10961984]
[202]
Segal-Bendirdjian, E.; Coulaud, D.; Roques, B-P.; Le Pecq, J.B. Selective loss of mitochondrial DNA after treatment of cells with ditercalinium (NSC 335153), an antitumor bis-intercalating agent. Cancer Res., 1988, 48(17), 4982-4992.
[PMID: 2842043]
[203]
Yang, Z.; Schumaker, L.M.; Egorin, M.J.; Zuhowski, E.G.; Guo, Z.; Cullen, K.J. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin. Cancer Res., 2006, 12(19), 5817-5825.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1037 ] [PMID: 17020989]
[204]
Marrache, S.; Pathak, R.K.; Dhar, S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc. Natl. Acad. Sci. USA, 2014, 111(29), 10444-10449.
[http://dx.doi.org/10.1073/pnas.1405244111 ] [PMID: 25002500]
[205]
Wisnovsky, S.P.; Wilson, J.J.; Radford, R.J.; Pereira, M.P.; Chan, M.R.; Laposa, R.R.; Lippard, S.J.; Kelley, S.O. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol., 2013, 20(11), 1323-1328.
[http://dx.doi.org/10.1016/j.chembiol.2013.08.010 ] [PMID: 24183971]
[206]
Sasaki, R.; Suzuki, Y.; Yonezawa, Y.; Ota, Y.; Okamoto, Y.; Demizu, Y.; Huang, P.; Yoshida, H.; Sugimura, K.; Mizushina, Y. DNA polymerase γ inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells. Cancer Sci., 2008, 99(5), 1040-1048.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00771.x ] [PMID: 18312466]
[207]
Akiyoshi, T.; Matzno, S.; Sakai, M.; Okamura, N.; Matsuyama, K. The potential of vitamin K3 as an anticancer agent against breast cancer that acts via the mitochondria-related apoptotic pathway. Cancer Chemother. Pharmacol., 2009, 65(1), 143-150.
[http://dx.doi.org/10.1007/s00280-009-1016-7 ] [PMID: 19449007]
[208]
Carlson, E.A.; Rao, V.K.; Yan, S.S. From a cell’s viewpoint: targeting mitochondria in Alzheimer’s disease. Drug Discov. Today Ther. Strateg., 2013, 10(2), e91-e98.
[http://dx.doi.org/10.1016/j.ddstr.2014.04.002 ] [PMID: 25558270]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy