Skip to main content
Log in

Propidium monoazide–quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools

  • Research Article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Lack of culturability in the viable but non-culturable (VBNC) bacteria and the ability to regain infectivity in favourable conditions is one of the new challenges of public health providers for Pseudomonas aeruginosa monitoring in environmental samples. Propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) is one of the promising methods for timely detection of VBNC pathogens in environmental samples. We developed and used a method for the first time to detection of VBNC P. aeruginosa in swimming pool water samples using a membrane filter (MF). Moreover, the dominant model of the distribution of colonies on the MF and the effect of the culture medium and MF type on colony recovery by MF were evaluated. Swimming pool samples were subjected to conventional culture-based, qPCR and PMA-qPCR methods and the results were compared for the presence of VBNC P. aeruginosa in the samples. The positivity rate was 21% and 75% for P. aeruginosa in water samples as confirmed by standard culture-based and qPCR methods, respectively. Furthermore, of 24 samples, 9 (37.5%) were positive for VBNC P. aeruginosa. The developed qPCR/PMA-qPCR assay can detect the VBNC bacteria directly from aquatic samples and may result in better monitoring of recreational waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hajjartabar M. Pseudomonas aeruginosa isolated from otitis externa associated with recreational waters in some public swimming pools in Tehran. Iran J Clinic Infect Dis. 2010;5(3):142–51.

    Google Scholar 

  2. Mena KD, Gerba CP. Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol. 2009;201:71–115.

    CAS  Google Scholar 

  3. Kim SH, Lee BY, Lau GW, Cho YH. IscR modulates catalase a (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14. J Microbiol Biotechnol. 2009;19(12):1520–6.

    Article  CAS  Google Scholar 

  4. Amagliani G, Schiavano GF, Stocchi V, Bucci G, Brandi G. Application of real-time PCR to Pseudomonas aeruginosa monitoring in a public swimming pool. Microchem J. 2013;110:656–9.

    Article  CAS  Google Scholar 

  5. Bédard E, Charron D, Lalancette C, Déziel E, Prévost M. Recovery of Pseudomonas aeruginosa culturability following copper-and chlorine-induced stress. FEMS Microbiol Lett. 2014;356(2):226–34.

    Article  Google Scholar 

  6. Dwidjosiswojo Z, Richard J, Moritz MM, Dopp E, Flemming HC, Wingender J. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments. Int J Hyg Environ Health. 2011;214(6):485–92.

    Article  CAS  Google Scholar 

  7. Amagliani G, Parlani ML, Brandi G, Sebastianelli G, Stocchi V, Schiavano GF. Molecular detection of Pseudomonas aeruginosa in recreational water. Int J Environ Health Res. 2012;22(1):60–70.

    Article  CAS  Google Scholar 

  8. Lee CS, Wetzel K, Buckley T, Wozniak D, Lee J. Rapid and sensitive detection of Pseudomonas aeruginosa in chlorinated water and aerosols targeting gyrB gene using real-time PCR. J Appl Microbiol. 2011;111(4):893–903.

    Article  CAS  Google Scholar 

  9. Zhang S, Xu X, Wu Q, Zhang J. Rapid and sensitive detection of Pseudomonas aeruginosa in bottled water by loop-mediated isothermal amplification. Eur Food Res Technol. 2013;236(1):209–15.

    Article  CAS  Google Scholar 

  10. Gensberger ET, Polt M, Konrad-Köszler M, Kinner P, Sessitsch A, Kostić T. Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality. Water Res. 2014;67:367–76.

    Article  CAS  Google Scholar 

  11. Zhang S, Ye C, Lin H, Lv L, Yu X. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. Environ Sci Technol. 2015;49(3):1721–8.

    Article  CAS  Google Scholar 

  12. Ayrapetyan M, Williams TC, Oliver JD. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol. 2015;23(1):7–13.

    Article  CAS  Google Scholar 

  13. Wingender J, Flemming H-C. Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health. 2011;214(6):417–23.

    Article  Google Scholar 

  14. Trevors J. Viable but non-culturable (VBNC) bacteria: gene expression in planktonic and biofilm cells. J Microbiol Methods. 2011;86(2):266–73.

    Article  CAS  Google Scholar 

  15. Rita R. Colwell. Viable but not cultivable Bacteria. In: Slava S. Epstein, editor. Uncultivated Microorganisms. Vol. 10, Microbiology Monographs New York: Springer; 2009.

  16. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium monoazide for live/dead distinction in microbial ecology. J Appl Environ Microbiol. 2007;73(16):5111–7.

    Article  CAS  Google Scholar 

  17. Nocker A, Mazza A, Masson L, Camper AK, Brousseau R. Selective detection of live bacteria combining propidium monoazide sample treatment with microarray technology. J Microbiol Methods. 2009;76(3):253–61.

    Article  CAS  Google Scholar 

  18. Tavernier S, Coenye T. Quantification of Pseudomonas aeruginosa in multispecies biofilms using PMA-qPCR. PeerJ. 2015;3:e787.

    Article  Google Scholar 

  19. Shi P, Jia S, Zhang X-X, Zhang T, Cheng S, Li A. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res. 2013;47(1):111–20.

    Article  CAS  Google Scholar 

  20. Streeter K, Katouli M. Pseudomonas aeruginosa: a review of their pathogenesis and prevalence in clinical settings and the environment. Infection, Epidemiology and Microbiology. 2016;2(1):25–32.

    Article  Google Scholar 

  21. Kerr KG, Snelling AM. Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect. 2009;73(4):338–44.

    Article  CAS  Google Scholar 

  22. American Public Health Association. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: APHA; 2012.

    Google Scholar 

  23. Institute of standards and industrial research of Iran (ISIRI). Water quality – Detection and enumeration of Pseudomonas aeruginosa by membrane filtration method. Tehran, Iran: ISIRI; 2006 Standard No 8869: 2006.

  24. International Organization for Standardization (ISO). Water quality – Detection and enumeration of Pseudomonas aeruginosa – Method by membrane filtration. Switzerland: ISO; 2006 Standard No 16266: 2006.

  25. Procop G, Church DL, Hall GS, et al. Koneman's color atlas and textbook of diagnostic microbiology. Philadelphia: Wolters Kluwer Health; 2017.

    Google Scholar 

  26. Rasband WS. ImageJ, US National Institutes of Health. In: Eliceiri KW, editor. "NIH image to ImageJ: 25 years of image analysis". Maryland. USA: Bethesda; 2007.

    Google Scholar 

  27. Reyneke B, Ndlovu T, Khan S, Khan W. Comparison of EMA-, PMA-and DNase qPCR for the determination of microbial cell viability. Appl Microbiol Biotechnol. 2017;101(19):7371–83.

    Article  CAS  Google Scholar 

  28. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 28th ed. Wayne, PA: CLSI; 2018.

    Google Scholar 

  29. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for statistical Computing; 2018.

  30. Gamer MLJ, Fellows I, Singh P. Irr: various coefficients of interrater reliability and agreement. In: R package; 2012.

    Google Scholar 

  31. Chajewski M. Rela: scale item analysis. R package, ver. 2009;4:1.

    Google Scholar 

  32. Neghab M, Gorgi H, Baghapour M, et al. Bacterial contamination of the swimming pools in shiraz, Iran; relationship to residual chlorine and other determinants. Pak J Biol Sci. 2006;9(13):2473–7.

    Article  Google Scholar 

  33. Nikaeen M, Hatamzadeh M, Vahid Dastjerdi M, Hassanzadeh A. Predictive indicators of the safety of swimming pool waters. Wat Sci Tech. 2009;60(12):3101–7.

    Article  CAS  Google Scholar 

  34. Ghaneian M, Ehrampoush M, Dad V, et al. [an investigation on physicochemical and microbial water quality of swimming pools in Yazd]. SSU_Journals. 2012;20(3):340-49. Persian. .

  35. Heinemeyer EA, Luden K. [Problems applying DIN EN 12780 for the detection of Pseudomonas aeruginosa in water from natural swimming pools and surface water]. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 2009;52(3):345–351. German, Probleme bei der Anwendung der DIN EN 12780 zum Nachweis von Pseudomonas aeruginosa aus Schwimmteichen und Oberflächengewässern.

  36. Papadopoulou C, Economou V, Sakkas H, Gousia P, Giannakopoulos X, Dontorou C, et al. Microbiological quality of indoor and outdoor swimming pools in Greece: investigation of the antibiotic resistance of the bacterial isolates. Int J Hyg Environ Health. 2008;211(3–4):385–97.

    Article  Google Scholar 

  37. Sartory DP, Brewer M, Beswick A, Steggles D. Evaluation of the Pseudalert®/Quanti-tray® MPN test for the rapid enumeration of Pseudomonas aeruginosa in swimming Pool and Spa Pool waters. Curr Microbiol. 2015;71(6):699–705.

    Article  CAS  Google Scholar 

  38. Minogue E, Reddington K, Dorai-Raj S, Tuite N, Clancy E, Barry T. Diagnostics method for the rapid quantitative detection and identification of low-level contamination of high-purity water with pathogenic bacteria. J Ind Microbiol Biotechnol. 2013;40(9):1005–13.

    Article  CAS  Google Scholar 

  39. Lee S, Bae S. Evaluating the newly developed dye, DyeTox13 green C-2 Azide, and comparing it with existing EMA and PMA for the differentiation of viable and nonviable bacteria. J Microbiol Methods. 2018;148:33–9.

    Article  CAS  Google Scholar 

  40. Yáñez MA, Nocker A, Soria-Soria E, Múrtula R, Martínez L, Catalán V. Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR. J Microbiol Methods. 2011;85(2):124–30.

    Article  Google Scholar 

  41. Ramamurthy T, Ghosh A, Pazhani GP, et al. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health. 2014;2:103.

    Article  Google Scholar 

  42. Rice SA, Van den Akker B, Pomati F, et al. A risk assessment of Pseudomonas aeruginosa in swimming pools: a review. J Water Health. 2012;10(2):181–96.

    Article  Google Scholar 

Download references

Acknowledgements

This study is a part of PhD thesis conducted by the first author submitted to Tehran University of Medical Sciences. The authors acknowledge the Center for Water Quality Research (CWQR), Institute for Environmental Research (IER) and Tehran University of Medical Sciences (TUMS), Tehran, Iran, for financially supporting this project (Project No: 96-01-46-34273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Nabizadeh Nodehi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golpayegani, A., Douraghi, M., Rezaei, F. et al. Propidium monoazide–quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools. J Environ Health Sci Engineer 17, 407–416 (2019). https://doi.org/10.1007/s40201-019-00359-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-019-00359-w

Keywords

Navigation