Skip to main content
Log in

Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

While bioremediation technologies for trichloroethene (TCE), a suspected carcinogen, have been successfully demonstrated in neutral pH aquifers, these technologies are often ineffective for remediating TCE contamination in acidic aquifers (i.e., pH < 5.5). Acidophilic methanotrophs have been detected in several low pH environments, but their presence and potential role in TCE degradation in acidic aquifers is unknown. This study applied a stable isotope probing-based technique to identify active methanotrophs that are capable of degrading TCE in microcosms prepared from two low pH aquifers. A total of thirty-five clones of methanotrophs were derived from low pH microcosms in which methane and TCE degradation had been observed, with 29 clustered in γ-Proteobacteria and 6 clustered in α-Proteobacteria. None of the clones has a high similarity to known acidophilic methanotrophs from other environments. The presence and diversity of particulate MMO and soluble MMO were also investigated. The pmoA gene was detected predominantly at one site, and the presence of a specific form of mmoX in numerous samples suggested that Methylocella spp. may be common in acidic aquifers. Finally, a methane-grown culture at pH 4 was enriched from an acidic aquifer and its ability to biodegrade various chlorinated ethenes was tested. Interestingly, the mixed culture rapidly degraded TCE and vinyl chloride, but not cis-dichloroethene after growth on methane. The data suggest that aerobic biodegradation of TCE and other chlorinated solvents in low pH groundwater may be facilitated by methanotrophic bacteria, and that there are potentially a wide variety of different strains that inhabit acidic aquifers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez-Cohen L, Speitel GE (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12(2):105–126

    Article  CAS  PubMed  Google Scholar 

  • Anderson JE, McCarty PL (1997) Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase. Appl Environ Microbiol 63(2):687–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66(12):5259–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN et al (2013) Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol 63(3):1096–1104

    Article  CAS  PubMed  Google Scholar 

  • Brockman FJ, Payne W, Workman DJ, Soong A, Manley S, Hazen TC (1995) Effect of gaseous nitrogen and phosphorus injection on in situ bioremediation of a trichloroethylene-contaminated site. J Hazard Mater 41(2):287–298

    Article  CAS  Google Scholar 

  • Bussmann I, Rahalkar M, Schink B (2006) Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol Ecol 56(3):331–344

    Article  CAS  PubMed  Google Scholar 

  • Cho K-C, Lee DG, Roh H, Fuller ME, Hatzinger PB, Chu K-H (2013) Application of 13C-stable isotope probing to identify RDX-degrading microorganisms in groundwater. Environ Pollut 178:350–360

    Article  CAS  PubMed  Google Scholar 

  • Cho K-C, Lee DG, Fuller ME, Hatzinger PB, Condee CW, Chu K-H (2015) Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions. J Hazard Mater 297:42–51

    Article  CAS  PubMed  Google Scholar 

  • Cho KC, Fuller ME, Hatzinger PB, Chu KH (2016) Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in situ bioremediation. Sci Total Environ 569–570:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PL, Trotsenko YA, Dedysh SN (2013) Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 63(6):2282–2289

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Panikov NS, Liesack W, Großkopf R, Zhou J, Tiedje JM (1998) Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282(5387):281–284

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50(3):955–969

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52(1):251–261

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Dunfield PF, Derakshani M, Stubner S, Heyer J, Liesack W (2003) Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol Ecol 43(3):299–308

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54(1):151–156

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187(13):4665–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedysh SN, Belova SE, Bodelier PL, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57(3):472–479

    Article  CAS  PubMed  Google Scholar 

  • Denver JM, Ator SW, Fischer JM, Harned DC, Schubert C, Szabo Z (2015) Water Quality in the north Atlantic Coastal Plain Surficial Aquifer System, U.C.O. (ed) Delaware, Maryland, New Jersey, New York, North Carolina, and Virginia, 1988–2009. https://pubs.usgs.gov/circ/1353/

  • DiSpirito AA, Gulledge J, Shiemke AK, Murrell JC, Lidstrom ME, Krema CL (1992) Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II and type X methanotrophs. Biodegradation 2(3):151–164

    Article  Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53(5):1231–1239

    Article  CAS  PubMed  Google Scholar 

  • EPA (2016) Fact sheet on trichloroethylene (TCE)

  • EPA (2017) TRI releases for trichloroethylene in the 2015 TRI National Analysis-Industry Sector

  • Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29(27):6419–6427

    Article  CAS  PubMed  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzinger PB, Banerjee R, Rezes R, Streger SH, McClay K, Schaefer CE (2017) Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates. Biodegradation 28(5):453–468

    Article  CAS  PubMed  Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2011) Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61(4):810–815

    Article  CAS  PubMed  Google Scholar 

  • Islam T, Torsvik V, Larsen Ø, Bodrossy L, Øvreås L, Birkeland N-K (2016) Acid-tolerant moderately thermophilic methanotrophs of the Class Gammaproteobacteria isolated from tropical topsoil with methane seeps. Front Microbiol 7:851

    PubMed  PubMed Central  Google Scholar 

  • Jablonski PE, Ferry JG (1992) Reductive dechlorination of trichloroethylene by the CO-reduced CO dehydrogenase enzyme complex from Methanosarcina thermophila. FEMS Microbiol Lett 96(1):55–59

    Article  CAS  Google Scholar 

  • Kim S, Bae W, Hwang J, Park J (2010) Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp. Water Sci Technol 62(9):1991–1997

    Article  CAS  PubMed  Google Scholar 

  • Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart G-J (2011) Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 77(16):5643–5654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh SC, Bowman JP, Sayler GS (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a Type I methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol 59(4):960–967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-W, Keeney DR, Lim D-H, Dispirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72(12):7503–7509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL, Gilmer PJ (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol 54(4):951–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lontoh S, Semrau JD (1998) Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl Environ Microbiol 64(3):1106–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maymo-Gatell X, Y-t Chien, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(5318):1568–1571

    Article  CAS  PubMed  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74(5):1305–1315

    Article  CAS  PubMed  Google Scholar 

  • Mills JC, Wilson JT, Wilson BH, Wiedemeier TH, Freedman DL (2018) Quantification of TCE co-oxidation in groundwater using a 14C-assay. Groundwater Monit Remed 38(2):57–67

    Article  CAS  Google Scholar 

  • Nelson MJ, Montgomery S, O’neill E, Pritchard P (1986) Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol 52(2):383–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson M, Montgomery S, Pritchard P (1988) Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol 54(2):604–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann A, Wohlfarth G, Diekert G (1996) Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J Biol Chem 271(28):16515–16519

    Article  CAS  PubMed  Google Scholar 

  • Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55(11):2819–2826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oldenhuis R, Oedzes JY, Van der Waarde J, Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol 57(1):7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfiffner SM, Palumbo AV, Phelps TJ, Hazen TC (1997) Effects of nutrient dosing on subsurface methanotrophic populations and trichloroethylene degradation. J Ind Microbiol Biotechnol 18(2):204–212

    Article  CAS  PubMed  Google Scholar 

  • Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, McNamara NP, Murrell JC (2011) Environmental distribution and abundance of the facultative methanotroph Methylocella. ISME J 5(6):1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Roh H, Yu C-P, Fuller ME, Chu K-H (2009) Identification of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine-degrading microorganisms via 15N-stable isotope probing. Environ Sci Technol 43(7):2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Semprini L, Hopkins GD, Roberts PV, Grbic-Galic D, McCarty PL (1991) A field evaluation of in-situ biodegradation of chlorinated ethenes: part 3 studies of competitive inhibition. Ground Water 29(2):239–250

    Article  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Vishwakarma P, Upadhyay S, Tripathi AK, Prasana H, Dubey SK (2009) Biodegradation of trichloroethylene (TCE) by methanotrophic community. Biores Technol 100(9):2469–2474

    Article  CAS  Google Scholar 

  • Terzenbach DP, Blaut M (1994) Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123(1–2):213–218

    Article  CAS  PubMed  Google Scholar 

  • Tsien H-C, Brusseau GA, Hanson RS, Waclett L (1989) Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol 55(12):3155–3161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama H, Nakajima T, Yagi O, Tabuchi T (1989a) Aerobic degradation of trichloroethylene at high concentration by a methane-utilizing mixed culture. Agric Biol Chem 53(4):1019–1024

    CAS  Google Scholar 

  • Uchiyama H, Nakajima T, Yagi O, Tabuchi T (1989b) Aerobic degradation of trichloroethylene by a new type II methane-utilizing bacterium, strain M. Agric Biol Chem 53(11):2903–2907

    CAS  Google Scholar 

  • Ul-Haque MF, Kalidass B, Vorobev A, Baral BS, DiSpirito AA, Semrau JD (2015) Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl Environ Microbiol 81(7):2466–2473

    Article  CAS  Google Scholar 

  • Vainberg S, Condee CW, Steffan RJ (2009) Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J Ind Microbiol Biotechnol 36(9):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61(10):2456–2463

    Article  CAS  PubMed  Google Scholar 

  • Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7(6):507–511

    Article  CAS  PubMed  Google Scholar 

  • Wilson JT, Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49(1):242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wymore RA, Lee MH, Keener WK, Miller AR, Colwell FS, Watwood ME, Sorenson KS (2007) Field evidence for intrinsic aerobic chlorinated ethene cometabolism by methanotrophs expressing soluble methane monooxygenase. Bioremediat J 11(3):125–139

    Article  CAS  Google Scholar 

  • Yang Y, Capiro NL, Marcet TF (2017) Organohalide respiration with chlorinated ethenes under low pH conditions 51(15):8579–8588

    CAS  Google Scholar 

  • Yu C-P, Chu K-H (2005) A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environ Sci Technol 39(24):9611–9619

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Strategic Environmental Research and Development Program (SERDP; Project ER-2531) for supporting some of the studies described herein as well as anonymous reviewers for their helpful suggestions. The results and interpretations presented are solely the opinion of the authors and not of SERDP unless otherwise stated in official documentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Hatzinger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Hatzinger, P.B., Streger, S.H. et al. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers. Biodegradation 30, 173–190 (2019). https://doi.org/10.1007/s10532-019-09875-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-019-09875-w

Keywords

Navigation