Skip to main content
Log in

Metal-Tolerant Fungal Communities Are Delineated by High Zinc, Lead, and Copper Concentrations in Metalliferous Gobi Desert Soils

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The soil fungal ecology of the southern Gobi region of Mongolia has been little studied. We utilized the ITS1 region from soil DNA to study possible influences soil metal concentrations on soil fungal community variation. In the sample network, a distinctive fungal community was closely associated with high zinc (Zn), lead (Pb), and copper (Cu) concentrations. The pattern of occurrence suggests that high metal concentrations are natural and not a product of mining activities. The metal-associated fungal community differs little from the “normal” community in its major OTUs, and in terms of major fungal guilds and taxa, and its distinctiveness depends on a combination of many less common OTUs. The fungal community in the sites with high metal concentrations is no less diverse than that in areas with normal background levels. Overall, these findings raise interesting questions of the evolutionary origin and functional characteristics of this apparently “metal-tolerant” community, and of the associated soil biota in general. It is possible that rehabilitation of metal-contaminated mined soils from spoil heaps could benefit from the incorporation of fungi derived from these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adriano DC (2001) ArsenicTrace elements in terrestrial environments. Springer, pp:219–261

  2. Van Der Ent A, Cardace D, Tibbett M, Echevarria G (2018) Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena 160:154–169

    Google Scholar 

  3. Baker D, Senft J (1995) Copper (179-205) i Alloway. BJ (red) Heavy metals in

    Google Scholar 

  4. Alloway B (1995) Cadmium, Ch. 6. Heavy metals in soils. Blackie, London, pp 100–124

    Google Scholar 

  5. Hildebrandt U, Hoef-Emden K, Backhausen S, Bothe H, Bożek M, Siuta A, Kuta E (2006) The rare, endemic zinc violets of Central Europe originate from Viola lutea Huds. Plant Syst Evol 257:205–222

    Google Scholar 

  6. Ernst WH (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80:251–274

    Google Scholar 

  7. Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hassen A, Saidi N, Cherif M, Boudabous A (1998) Resistance of environmental bacteria to heavy metals. Bioresour Technol 64:7–15

    CAS  Google Scholar 

  9. Piotrowska-Seget Z, Cycoń M, Kozdroj J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246

    Google Scholar 

  10. Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    CAS  PubMed  Google Scholar 

  11. Ashida J (1965) Adaptation of fungi to metal toxicants. Annu Rev Phytopathol 3:153–174

    CAS  Google Scholar 

  12. Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    CAS  Google Scholar 

  13. Ross I (1975) Some effects of heavy metals on fungal cells. Trans Br Mycol Soc 64:175–193

    Google Scholar 

  14. Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    CAS  PubMed  Google Scholar 

  15. Magsar U, Baasansuren E, Tovuudorj M-E, Shijirbaatar O, Chinbaatar Z, Lkhagvadorj K, Kwon O (2018) Medicinal plant diversity in the southern and eastern Gobi Desert region, Mongolia. J Ecol Environ 42:4

    Google Scholar 

  16. An C-B, Chen F-H, Barton L (2008) Holocene environmental changes in Mongolia: a review. Glob Planet Chang 63:283–289

    Google Scholar 

  17. Khashgerel B-E, Rye RO, Hedenquist JW, Kavalieris I (2006) Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia. Econ Geol 101:503–522

    CAS  Google Scholar 

  18. Panteleyev A, Eng P (2002) Report on the geology and mineral potential of ‘Shivee tolgoi’property, southern Gobi gold-copper belt, Mongolia. Private Report for Entrée Resources Inc.

  19. Wainwright AJ, Tosdal RM, Forster CN, Kirwin DJ, Lewis PD, Wooden JL (2011) Devonian and carboniferous arcs of the Oyu Tolgoi porphyry Cu-Au district, South Gobi region, Mongolia. Geol Soc Am Bull 123:306–328

    CAS  Google Scholar 

  20. Suzuki Y (2013) Conflict between mining development and nomadism in Mongolia The Mongolian ecosystem network. Springer, pp:269–294

  21. Miller J (2013) Oyu Tolgoi: a nation changer. Eng Min J 214:68

    Google Scholar 

  22. Kirwin D, Forster C, Kavalieris I, Crane D, Orssich C, Panther C, Garamjav D, Munkhbat T, Niislelkhuu G (2005) The Oyu Tolgoi copper-gold porphyry deposits, south Gobi, Mongolia. Geodynamics and metallogeny of Mongolia with a special emphasis on copper and gold deposits SEG-IAGOD field trip: 14-16.

  23. Topp GC, Reynolds WD, Green RE (1993) Advances in measurement of soil physical properties: bringing theory into practice. Soil Sci 156:429–432

    Google Scholar 

  24. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  PubMed  Google Scholar 

  25. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322

    Google Scholar 

  26. Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and application. J Invest Dermatol 133:1–4

    Google Scholar 

  27. Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol: syp020.

  28. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  30. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinformatics 4.

    Google Scholar 

  32. Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    CAS  PubMed  Google Scholar 

  33. Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T (2010) The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol 186:281–285

    PubMed  Google Scholar 

  34. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC bioinformatics 9:386

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Google Scholar 

  36. Liedloff A (1999) Mantel nonparametric test calculator. School of Natural Resource Sciences. Queensland University of Technology, Queensland, Australia

    Google Scholar 

  37. Bakker JD (2008) Increasing the utility of indicator species analysis. J Appl Ecol 45:1829–1835

    Google Scholar 

  38. De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684

    Google Scholar 

  39. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  40. Roberts DW (2007) labdsv: ordination and multivariate analysis for ecology. R package version 1.

  41. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge university press

  42. Ter Braak CJ (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Google Scholar 

  43. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A (2014) Global diversity and geography of soil fungi. Science 346:1256688

    PubMed  Google Scholar 

  44. Baird R, Stokes CE, Wood-Jones A, Alexander M, Watson C, Taylor G, Johnson K, Remaley T, Diehl S (2014) Fleshy saprobic and ectomycorrhizal fungal communities associated with healthy and declining eastern hemlock stands in Great Smoky Mountains National Park. Southeast Nat 13:192–219

    Google Scholar 

  45. Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    CAS  PubMed  Google Scholar 

  46. Matsushita Y, Bao Z, Kurose D, Okada H, Takemoto S, Sawada A, Nagase H, Takano M, Murakami H, Koitabashi M (2015) Community structure, diversity, and species dominance of bacteria, fungi, and nematodes from naturally and conventionally farmed soil: a case study on Japanese apple orchards. Org Agric 5:11–28

    Google Scholar 

  47. Wang H, Guo S, Huang M, Thorsten LH, Wei J (2010) Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. Sci China Life Sci 53:1163–1169

    CAS  PubMed  Google Scholar 

  48. Vadkertiová R, Sláviková E (2006) Metal tolerance of yeasts isolated from water, soil and plant environments. J Basic Microbiol 46:145–152

    PubMed  Google Scholar 

  49. Cannon PF, Kirk PM (2007) Fungal families of the world. Cabi

    Google Scholar 

  50. Yoshida N, Sakai Y, Serata M, Tani Y, Kato N (1995) Distribution and properties of fructosyl amino acid oxidase in fungi. Appl Environ Microbiol 61:4487–4489

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway. Appl Environ Microbiol 67:3514–3522

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tani Y, Mori N, Ogata K, Yamada H (1979) Production and purification of choline oxidase from Cylindrocarpon didymum M–1. Agric Biol Chem 43:815–820

    CAS  Google Scholar 

  53. Malonek S, Rojas M, Hedden P, Gaskin P, Hopkins P, Tudzynski B (2005) Functional characterization of two cytochrome P450 monooxygenase genes, P450-1 and P450-4, of the gibberellic acid gene cluster in Fusarium proliferatum (Gibberella fujikuroi MP-D). Appl Environ Microbiol 71: 1462-1472, Functional Characterization of Two Cytochrome P450 Monooxygenase Genes, P450-1 and P450-4, of the Gibberellic Acid Gene Cluster in Fusarium proliferatum (Gibberella fujikuroi MP-D).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Troncoso C, González X, Bömke C, Tudzynski B, Gong F, Hedden P, Rojas MC (2010) Gibberellin biosynthesis and gibberellin oxidase activities in Fusarium sacchari, Fusarium konzum and Fusarium subglutinans strains. Phytochemistry 71:1322–1331

    CAS  PubMed  Google Scholar 

  55. Bhatnagar A, Bhatnagar M (2005) Microbial diversity in desert ecosystems. Curr Sci 89:91–100

    Google Scholar 

  56. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561

    CAS  PubMed  Google Scholar 

  57. Dix NJ (2012) Fungal ecology. Springer Science & Business Media

  58. Ciccarone C, Rambelli A (2000) A study on micro-fungi in arid areas: notes on soil saprotrophs and animal opportunistic pathogens. Plant Biosyst 134:25–29

    Google Scholar 

  59. Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462

    Google Scholar 

  60. Frostegård Å, Tunlid A, Bååth E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28:55–63

    Google Scholar 

  61. Bååth E, Díaz-Raviña M, Frostegård Å, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245

    PubMed  PubMed Central  Google Scholar 

  62. Smolders E, Buekers J, Oliver I, McLaughlin MJ (2004) Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environ Toxicol Chem: An Inter J 23:2633–2640

    CAS  Google Scholar 

  63. Speir TW, Van Schaik AP, Hunter LC, Ryburn JL, Percival HJ (2007) Attempts to derive EC 50 values for heavy metals from land-applied Cu-, Ni-, and Zn-spiked sewage sludge. Soil Biol Biochem 39:539–549

    CAS  Google Scholar 

  64. Anderson IC, Parkin PI, Campbell CD (2008) DNA-and RNA-derived assessments of fungal community composition in soil amended with sewage sludge rich in cadmium, copper and zinc. Soil Biol Biochem 40:2358–2365

    CAS  Google Scholar 

  65. Macdonald C, Singh B, Peck J, Van Schaik A, Hunter L, Horswell J, Campbell C, Speir T (2007) Long-term exposure to Zn-spiked sewage sludge alters soil community structure. Soil Biol Biochem 39:2576–2586

    CAS  Google Scholar 

  66. Kabata-Pendias A (2010) Trace elements in soils and plants. CRC press

  67. Gadd GM (1994) Interactions of fungi with toxic metals. The genus Aspergillus. Springer, pp. 361-374

  68. Blaudez D, Jacob C, Turnau K, Colpaert J, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M (2000) Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol Res 104:1366–1371

    CAS  Google Scholar 

  69. Yang Z.X, Liu S.Q, Zheng D.W, Feng S.D (2006) Effects of cadmium, zinc and lead on soil enzyme activities. J Environ Sci 18: 1135-1141.

    Google Scholar 

  70. Wang Y-P, J-y SHI, Qi L, X-c C, Y-x C (2007) Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J Environ Sci 19:848–853

    CAS  Google Scholar 

  71. Cedergreen N (2014) Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS One 9:e96580

    PubMed  PubMed Central  Google Scholar 

  72. Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259

    CAS  Google Scholar 

  73. Rajapaksha R, Tobor-Kapłon M, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang X, Wei D, Ma Y, McLaughlin MJ (2015) Derivation of soil ecological criteria for copper in Chinese soils. PLoS One 10: e0133941.

    PubMed  PubMed Central  Google Scholar 

  75. Christensen TH (1984) Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH, and calcium. Water Air Soil Pollut 21:105–114

    CAS  Google Scholar 

  76. Appel C, Ma L (2002) Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. J Environ Qual 31:581–589

    CAS  PubMed  Google Scholar 

  77. Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    CAS  PubMed  Google Scholar 

  78. Munoz-Melendez G, Korre A, Parry S (2000) Influence of soil pH on the fractionation of Cr, Cu and Zn in solid phases from a landfill site. Environ Pollut 110:497–504

    CAS  PubMed  Google Scholar 

  79. Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81

    CAS  PubMed  Google Scholar 

  80. Smolders E, Oorts K, Van Sprang P, Schoeters I, Janssen CR, McGrath SP, McLaughlin MJ (2009) Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ Toxicol Chem 28:1633–1642

    CAS  PubMed  Google Scholar 

  81. Babich H, Stotzky G, Ehrlich H (1980) Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. CRC Crit Rev Microbiol 8:99–145

    CAS  Google Scholar 

  82. Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  83. Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic press

  84. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    CAS  PubMed  Google Scholar 

  85. Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, Chu H (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 57:204–211

    CAS  Google Scholar 

  86. Yanagawa K, Morono Y, de Beer D, Haeckel M, Sunamura M, Futagami T, Hoshino T, Terada T, K-i N, Urabe T (2013) Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes. The ISME J 7:555–567

    CAS  PubMed  Google Scholar 

  87. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhibao D, Xunming W, Lianyou L (2000) Wind erosion in arid and semiarid China: an overview. J Soil Water Conserv 55:439–444

    Google Scholar 

  89. Khashgerel B-E, Kavalieris I, K-i H (2008) Mineralogy, textures, and whole-rock geochemistry of advanced argillic alteration: Hugo Dummett porphyry Cu–Au deposit, Oyu Tolgoi mineral district, Mongolia. Mineral Deposita 43:913–932

    CAS  Google Scholar 

  90. Perelló J, Cox D, Garamjav D, Sanjdorj S, Diakov S, Schissel D, Munkhbat TO, Oyun G (2001) Oyu Tolgoi, Mongolia: siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket. Econ Geol 96:1407–1428

    Google Scholar 

  91. Brady KU, Kruckeberg AR, Bradshaw Jr H (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Google Scholar 

  92. Kim M, Boldgiv B, Singh D, Chun J, Lkhagva A, Adams JM (2013) Structure of soil bacterial communities in relation to environmental variables in a semi-arid region of Mongolia. J Arid Environ 89:38–44

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) grant funded by the Korean government, Ministry of Education, Science and Technology (MEST) (NRF 2013-031400). We also received logistical support for field work and soil analytical services from the Oyu Tolgoi mining company. DA, OE, SU, BB were also supported by the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bazartseren Boldgiv or Jonathan M. Adams.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1043 kb)

ESM 2

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerfahi, D., Ogwu, M.C., Ariunzaya, D. et al. Metal-Tolerant Fungal Communities Are Delineated by High Zinc, Lead, and Copper Concentrations in Metalliferous Gobi Desert Soils. Microb Ecol 79, 420–431 (2020). https://doi.org/10.1007/s00248-019-01405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01405-8

Keywords

Navigation