Skip to main content
Log in

Balanced activity of microRNA166/165 and its target transcripts from the class III homeodomain-leucine zipper family regulates root growth in Arabidopsis thaliana

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Overexpression of miR166/165 down-regulates target HD - ZIP IIIs and promotes root growth by enhancing cell division and meristematic activity, whereas overexpression of HD - ZIP IIIs inhibits root growth in Arabidopsis thaliana.

Abstract

Post-embryonic growth of higher plants is maintained by active meristems harbouring undifferentiated cells. Shoot and root apical meristems (SAM and RAM) utilize both similar and distinct signalling mechanisms for their maintenance in Arabidopsis thaliana. An important regulatory role in this context has the interaction of microRNAs with their target mRNAs, mostly encoding transcription factors. One class of microRNA166/165 (miR166/165) has been implicated in the maintenance of SAM and vascular patterning. Here, we show that miR166/165 plays an important role in root growth also by negatively regulating its target transcripts, HD-ZIP IIIs, in the RAM. While overexpression of miR166 promotes RAM activity, overexpression of its targets reduces RAM activity. These results reveal a conserved role of miR166/165 in the maintenance of SAM and RAM activity in A. thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ARF:

AUXIN RESPONSE FACTOR

ATHB:

Arabidopsis thaliana HOMEOBOX

dag:

Days after germination

eTM:

Endogenous target mimic

HD-ZIP III:

CLASS III HOMEODOMAIN-LEUCINE ZIPPER

miR166/165 :

microRNA166/165

PHB:

PHABULOSA

PHV:

PHAVOLUTA

PLT:

PLETHORA

QC:

Quiescent centre

RAM:

Root apical meristem

REV:

REVOLUTA

SAM:

Shoot apical meristem

SCR:

SCARECROW

SHR:

SHORT ROOT

WOX5:

WUSCHEL-RELATED HOMEOBOX 5

References

  • Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63:615–636

    Article  CAS  PubMed  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  CAS  PubMed  Google Scholar 

  • Benkova E, Hejatko J (2009) Hormone interactions at the root apical meristem. Plant Mol Biol 69:383–396

    Article  CAS  PubMed  Google Scholar 

  • Bianco MD, Giustini L, Sabatini S (2013) Spatiotemporal changes in the role of cytokinin during root development. New Phytol 199:324–338

    Article  PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887

    Article  CAS  PubMed  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X (2012) Small RNAs in development—insights from plants. Curr Opin Genet Dev 22:361–367

    Article  PubMed Central  PubMed  Google Scholar 

  • Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23:549–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682

    Article  CAS  PubMed  Google Scholar 

  • Dello Ioio R, Galinha C, Fletcher AG, Grigg SP, Molnar A, Willemsen V, Scheres B, Sabatini S, Baulcombe D, Maini PK, Tsiantis M (2012) A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis. Curr Biol 22:1699–1704

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Palme K (2002) Polar auxin transport–old questions and new concepts? Plant Mol Biol 49:273–284

    Article  CAS  PubMed  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 106:16529–16534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Kaplinsky NJ, Barton MK (2004) Plant biology. Plant acupuncture: sticking PINs in the right places. Science 306:822–823

    Article  CAS  PubMed  Google Scholar 

  • Khan GA, Declerck M, Sorin C, Hartmann C, Crespi M, Lelandais-Briere C (2011) MicroRNAs as regulators of root development and architecture. Plant Mol Biol 77:47–58

    Article  CAS  PubMed  Google Scholar 

  • Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meng Y, Ma X, Chen D, Wu P, Chen M (2010) MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun 393:345–349

    Article  CAS  PubMed  Google Scholar 

  • Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2009) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177

    Article  PubMed Central  Google Scholar 

  • Moubayidin L, Perilli S, Dello Ioio R, Di Mambro R, Costantino P, Sabatini S (2010) The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol 20:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Benfey PN (2002) Signaling in and out: control of cell division and differentiation in the shoot and root. Plant Cell 14(Suppl):S265–S276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537

    Article  PubMed Central  PubMed  Google Scholar 

  • Palme K, Galweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2:375–381

    Article  CAS  PubMed  Google Scholar 

  • Perilli S, Moubayidin L, Sabatini S (2010) The molecular basis of cytokinin function. Curr Opin Plant Biol 13:21–26

    Article  CAS  PubMed  Google Scholar 

  • Perilli S, Di Mambro R, Sabatini S (2012) Growth and development of the root apical meristem. Curr Opin Plant Biol 15:17–23

    Article  CAS  PubMed  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh A, Roy S, Sarkar AK (2012) SWP1 negatively regulates lateral root initiation and elongation in Arabidopsis. Plant Signal Behav 7:1522–1525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668

    Article  CAS  PubMed  Google Scholar 

  • Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank DBT (Department of Biotechnology, Government of India) for a Ramalingaswami fellowship (BT/HRD/35/02/06/2008) grant to AKS, CSIR (Council for Scientific and Industrial Research, India) for a fellowship to AS and SS, and NIPGR (National Institute of Plant Genome Research, India) for internal funding and facility to carry out this work. We thank ABRC for Arabidopsis seeds and Prof. X. Wang (Institute of Genetics and Developmental Biology, China) for eTM-miR166.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ralf Reski or Ananda K. Sarkar.

Additional information

Communicated by P. Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2014_1573_MOESM1_ESM.tif

Supplementary material 1 Suppl. Fig. 1 Down-regulation of HD-ZIP IIIs by miR166/165 overexpression enhances root growth in Arabidopsis. a Real-time quantitative RT-PCR analysis showing relative expression level of different HD-ZIP III in miR166-Oe (in comparison to wild type). bc Confocal images of roots showing RAM size (the distance between two arrows) of miR166a-Oe #45 in comparison to wild type (n = 10 for each genotype). Quantification of RAM size in miR166a-Oe #45 and wild type (n = 6 or more for each genotype). ef Confocal images of roots showing RAM size (the distance between two arrows) of miR166a-Oe #46 and wild type (n = 10 for each genotype). g Quantification of RAM size in miR166a-Oe #46 and wild type (n = 9 or more for each genotype). hi Quantification of cortical cell number in RAM of miR166-Oe #45 (n = 9) and #46 (n = 9) root in comparison to wild type. ‘n’ represents number of plants. At least two biological replicates were used. Error bars represent SD (standard deviation). Asterisks indicate significant difference at P < 0.05 (ANOVA). Scale bars represent 100 μm (b, c, e and f) (TIFF 2107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Singh, S., Panigrahi, K.C.S. et al. Balanced activity of microRNA166/165 and its target transcripts from the class III homeodomain-leucine zipper family regulates root growth in Arabidopsis thaliana . Plant Cell Rep 33, 945–953 (2014). https://doi.org/10.1007/s00299-014-1573-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1573-z

Keywords

Navigation