Skip to main content
Log in

Impaired autophagy mediates hyperhomocysteinemia-induced HA-VSMC phenotypic switching

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia (HHcy) is a highly-related risk factor in vascular smooth muscle cell (VSMC) phenotypic modulation and atherosclerosis. Growing evidence indicated that autophagy is involved in pathological arterial changes. However, the risk mechanisms by which homocysteine and VSMC autophagy interact with cardiovascular disease are poorly understood. This study verified the homocysteine-responsive endoplasmic reticulum protein promotion of VSMC phenotypic switching, and the formation of atherosclerotic plaque in vitro. We found that impaired autophagy, as evidenced by decreased levels of MAP1LC3B II/MAP1LC3B I, has a vital role in HHcy-induced human aortic (HA)-VSMC phenotypic switching, with a decrease in contractile proteins (SM α-actin and calponin) and an increase in osteopontin. Knockdown of the essential autophagy gene Atg7 by small interfering RNA promoted HA-VSMC phenotypic switching, indicating that impaired autophagy induces phenotypic switching in these cells. HHcy co-treatment with rapamycin triggered autophagy, which alleviated HA-VSMC phenotypic switching. Finally, we found that Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor for maintaining genomic stability by resisting oxidative stress and restoring autophagy, is closely involved in this process. HHcy clearly decreased KLF4 expression. KLF4-specific siRNA aggravated defective autophagy and phenotypic switching. Mechanistically, KLF4 regulated the HHcy-induced decrease in HA-VSMC autophagy via the m-TOR signaling pathway. In conclusion, these results demonstrated that the KLF4-dependent rapamycin signaling pathway is a novel mechanism underlying HA-VSMC phenotypic switching and is crucial for HHcy-induced HA-VSMCs with defective autophagy to accelerate early atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HHcy:

Hyperhomocysteinemia

Hcy:

Homocysteine

VSMC:

Vascular smooth muscle cell

HA-VSMC:

Primary human aortic vascular smooth muscle cells

m-TOR:

Mammalian target of rapamycin

KLF4:

Krüppel-like factor 4

References

  • Barquilla A, Navarro M (2009) Trypanosome TOR as a major regulator of cell growth and autophagy. Autophagy 5(2):256–258

    Article  CAS  PubMed  Google Scholar 

  • Castino R, Davies J, Beaucourt S, Isidoro C, Murphy D (2005) Autophagy is a prosurvival mechanism in cells expressing an autosomal dominant familial neurohypophyseal diabetes insipidus mutant vasopressin transgene. FASEB J 19(8):1021–1023

    Article  CAS  PubMed  Google Scholar 

  • Chappell J, Harman JL, Narasimhan VM, Yu H, Foote K, Simons BD, Bennett MR, Jørgensen HF (2016) Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circ Res 119(12):1313–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang H, Liu H, Li K, Su X (2018) Homocysteine up-regulates ET B receptors via suppression of autophagy in vascular smooth muscle cells. Microvasc Res 119:13–21

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Jia G, Agrawal DK (2007) Autophagy of vascular smooth muscle cells in atherosclerotic lesions. Autophagy 3(1):63–64

    Article  PubMed  Google Scholar 

  • Chistiakov DA, Orekhov AN, Bobryshev YV (2015) Vascular smooth muscle cell in atherosclerosis. Acta Physiol 214(1):33–50

    Article  CAS  Google Scholar 

  • Grootaert MO, Da Costa Martins PA, Bitsch N, Pintelon I, De Meyer GR, Martinet W, Schrijvers DM (2015) Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 11(11):2014–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Shi N, Cui X, Wang J, Fukui Y, Chen S (2015) Dedicator of cytokinesis 2, a novel regulator for smooth muscle phenotypic modulation and vascular remodeling. Circ Res 116(10):e71–e80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Zhu H, Zhang W, Okon I, Wang Q, Li H, Le Y, Xie Z (2013) 7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am J Pathol 183(2):626–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Zheng B, Zhang Y, Zhang X, Wang C, Yang Z, Sun Y, Wu X, Wen J (2015) KLF4 mediates the link between TGF-β1-induced gene transcription and H3 acetylation in vascular smooth muscle cells. FASEB J 29(9):4059–4070

    Article  CAS  PubMed  Google Scholar 

  • Hill BG, Haberzettl P, Ahmed Y, Srivastava S, Bhatnagar A (2008) Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J 410(3):525–534

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Zhang H, Zhang W, Kong W, Zhu Y, Zhang H, Xu Q, Li Y, Wang X (2009) Homocysteine promotes vascular smooth muscle cell migration by induction of the adipokine resistin. Am J Physiol-Cell Physiol 297(6):C1466–C1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin P, Bian Y, Wang K, Cong G, Yan R, Sha Y, Ma X, Zhou J, Yuan Z, Jia S (2018) Homocysteine accelerates atherosclerosis via inhibiting LXRα–mediated ABCA1/ABCG1–dependent cholesterol efflux from macrophages. Life Sci 214:41–50

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117(Pt 13):2805–2812

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Ni T, Zhang J, Meng L, Gao F, Pan S, Luo H, Xu F, Ru G, Chi J, Guo H (2018) Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int J Cardiol 269:242–249

    Article  PubMed  Google Scholar 

  • Liu C, DeRoo EP, Stecyk C, Wolsey M, Szuchnicki M, Hagos EG (2015) Impaired autophagy in mouse embryonic fibroblasts null for Kruppel-like factor 4 promotes DNA damage and increases apoptosis upon serum starvation. Mol Cancer 14:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Harris VA, Kumar S, Mansour HM, Black SM (2015) Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress. Redox Biol 6:516–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lü S, Deng J, Liu H, Liu B, Yang J, Miao Y, Li J, Wang N, Jiang C, Xu Q, Wang X, Feng J (2018) PKM2-dependent metabolic reprogramming in CD4 + T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med 96(6):585–600

    Article  CAS  PubMed  Google Scholar 

  • Mei Y, Thompson MD, Cohen RA, Tong X (2015) Autophagy and oxidative stress in cardiovascular diseases. Biochim et Biophys Acta (BBA) 1852(2):243–251

    Article  CAS  Google Scholar 

  • Murgai M, Ju W, Eason M, Kline J, Beury DW, Kaczanowska S, Miettinen MM, Kruhlak M, Lei H, Shern JF, Cherepanova OA, Owens GK, Kaplan RN (2017) KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat Med 23(10):1176–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano S, Ishii I, Shinmura K, Tamaki K, Hishiki T, Akahoshi N, Ida T, Nakanishi T, Kamata S, Kumagai Y, Akaike T, Fukuda K, Sano M, Suematsu M (2015) Hyperhomocysteinemia abrogates fasting-induced cardioprotection against ischemia/reperfusion by limiting bioavailability of hydrogen sulfide anions. J Mol Med 93(8):879–889

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld ME (2015) Converting smooth muscle cells to macrophage-like cells with KLF4 in atherosclerotic plaques. Nat Med 21(6):549–551

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16(1):46–56

    Article  CAS  PubMed  Google Scholar 

  • Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AAC, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK (2016) Erratum: Corrigendum: KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 22(2):217

    Article  CAS  PubMed  Google Scholar 

  • Song P, Wang S, He C, Wang S, Liang B, Viollet B, Zou M (2011) AMPKα2 deletion exacerbates neointima formation by upregulating Skp2 in vascular smooth muscle cells. Circ Res 109(11):1230–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Tong H, Zhang M, Wang XH (2012) Rosuvastatin inhibits the smooth muscle cell proliferation by targeting TNFalpha mediated Rho kinase pathway. J Geriatr Cardiol 9(2):180–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, Yen PM (2016) Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by Vitamin B supplementation. Cell Death Dis 7(12):e2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi N, Qipshidze N, Munjal C, Vacek JC, Metreveli N, Givvimani S, Tyagi SC (2012) Tetrahydrocurcumin ameliorates homocysteinylated cytochrome-c mediated autophagy in hyperhomocysteinemia mice after cerebral ischemia. J Mol Neurosci 47(1):128–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Jiang X, Yang F, Gaubatz JW, Ma L, Magera MJ, Yang X, Berger PB, Durante W, Pownall HJ, Schafer AI (2003) Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood 101(10):3901–3907

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhao B, Zhang Y, Tang Z, Shen Q, Zhang Y, Zhang W, Du J, Chien S, Wang N (2012) Krüppel-like factor 4 is induced by rapamycin and mediates the anti-proliferative effect of rapamycin in rat carotid arteries after balloon injury. Br J Pharmacol 165(7):2378–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Yang Y, Yan M, Zhan J, Fu X, Zheng X (2010) Autophagy plays a protective role in free cholesterol overload-induced death of smooth muscle cells. J Lipid Res 51(9):2581–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Liu Y, Liu Y, Zhao Y (2008) KLF4: a novel target for the treatment of atherosclerosis. Med Hypotheses 70(4):845–847

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Chen Q, He S, Yang M, Maguire EM, An W, Afzal TA, Luong LA, Zhang L, Xiao Q (2018) miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation. Circulation 137(17):1824–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan J, Wang Y, Wang Y, Tang Z, Tan P, Huang W, Liu Y (2014) Adiponectin attenuates the osteoblastic differentiation of vascular smooth muscle cells through the AMPK/mTOR pathway. Exp Cell Res 323(2):352–358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was sponsored by grants from the National Natural Science Foundation of China (Grant No. 81873120), the 325 Talent Plan of Zhejiang Province (Grant No. 2017.10), and the Provincial Ministry of Construction Project of Zhejiang Province (Grant No. WKJ-ZJ-1729).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jufang Chi or Hangyuan Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, T., Gao, F., Zhang, J. et al. Impaired autophagy mediates hyperhomocysteinemia-induced HA-VSMC phenotypic switching. J Mol Hist 50, 305–314 (2019). https://doi.org/10.1007/s10735-019-09827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-019-09827-x

Keywords

Navigation