Skip to main content

Advertisement

Log in

Identifying a Gene Knockout Strategy Using a Hybrid of Simple Constrained Artificial Bee Colony Algorithm and Flux Balance Analysis to Enhance the Production of Succinate and Lactate in Escherichia Coli

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

In recent years, metabolic engineering has gained central attention in numerous fields of science because of its capability to manipulate metabolic pathways in enhancing the expression of target phenotypes. Due to this, many computational approaches that perform genetic manipulation have been developed in the computational biology field. In metabolic engineering, conventional methods have been utilized to upgrade the generation of lactate and succinate in E. coli, although the yields produced are usually way below their theoretical maxima. To overcome the drawbacks  of such conventional methods, development of hybrid algorithm is introduced to obtain an optimal solution by proposing a gene knockout strategy in E. coli which is able to improve the production of lactate and succinate. The objective function of the hybrid algorithm is optimized using a swarm intelligence optimization algorithm and a Simple Constrained Artificial Bee Colony (SCABC) algorithm. The results maximize the production of lactate and succinate by resembling the gene knockout in E. coli. The Flux Balance Analysis (FBA) is integrated in a hybrid algorithm to evaluate the growth rate of E. coli as well as the productions of lactate and succinate. This results in the identification of a gene knockout list that contributes to maximizing the production of lactate and succinate in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY (2005) Metabolic engineering of escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71:7880. https://doi.org/10.1128/AEM.71.12.7880-7887.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657. https://doi.org/10.1002/bit.10803

    Article  PubMed  CAS  Google Scholar 

  3. Patil KR, Rocha I, Forster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6(1):1–12. https://doi.org/10.1186/14702105-6-308

    Article  Google Scholar 

  4. Rocha M, Maia P, Mendes R, Pinto JP, Ferreira EC, Nielsen J, Patil KR, Rocha I (2008) Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinform 9:499. https://doi.org/10.1186/1471-2105-9-499

    Article  CAS  Google Scholar 

  5. Martino GD, Cardillo FA, Starita A (2006) A new swarm intelligence coordination model inspired by collective prey retrieval and its application to image alignment. In: Runarsson T, Beyer HG, Burke E, Merelo-Guervós J, Whitley LD, Yao X (eds) Parallel problem solving from Nature—PPSN IX Springer, Berlin, pp 691–700

    Chapter  Google Scholar 

  6. Brajevic I, Tuba M, Subotic M (2011) Performance of the improved artificial bee colony algorithm on standard engineering constrained problems. Int J Math Comput Simul 5(2):135–143

    Google Scholar 

  7. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  Google Scholar 

  8. Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10(4):435–449. https://doi.org/10.1093/bib/bbp011

    Article  PubMed  CAS  Google Scholar 

  9. Rocha M, Maia P, Mendes R, Pinto JP, Ferreira EC, Nielsen J, Patil KR, Rocha I (2008) Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinform 9(1):499. https://doi.org/10.1186/1471-215-9-499

    Article  Google Scholar 

  10. Hua Q, Joyce AR, Fong SS, Palsson BO (2006) Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains. Biotechnol Bioeng 95(5):992–1002. https://doi.org/10.1002/bit.21073

    Article  PubMed  CAS  Google Scholar 

  11. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279(8):6613–6619. https://doi.org/10.1074/jbc.M311657200

    Article  PubMed  CAS  Google Scholar 

  12. Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105(1):161–171. https://doi.org/10.1002/bit.22548

    Article  PubMed  CAS  Google Scholar 

  13. Smith EL, Austen BM, Blumenthal KM, Nyc JF (1975) Glutamate dehydrogenases. In: The enzymes, New York, Academic Press, pp 293–367

    Google Scholar 

  14. Zhou L, Zuo ZR, Chen XZ, Niu DD, Tian KM, Prior BA, Shen W, Shi GY, Singh S, Wang ZX (2011) Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Curr Microbiol 62(3):981–989. https://doi.org/10.1007/s00284-010-9817-9

    Article  PubMed  CAS  Google Scholar 

  15. Niersbach M, Kreuzaler F, Geerse RH, Postma PW, Hirsch HJ (1992) Cloning and nucleotide-sequence of the Escherichia-Coli K-12 ppsA gene, encoding PEP synthase. Mol Gen Genet 231(2):332–336

    PubMed  CAS  Google Scholar 

  16. Gamo FJ, Portillo F, Gancedo C (1993) Characterization of mutations that overcome the toxic effect of glucose on phosphoglucose isomerase less strains of Saccharomyces cerevisiae. FEMS Microbiol Lett 106(3):233–238. https://doi.org/10.1111/j.1574-6968.1993.tb05969.x

    Article  PubMed  CAS  Google Scholar 

  17. Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68(4):1715–1727. https://doi.org/10.1128/AEM.68.4.1715-1721-2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cox SJ, Levanon SS, Sanchez A, Lin H, Peercy B, Bennett GN, San KY (2006) Development of a metabolic network design and optimization framework incorporating implementation constraints: A succinate production case study. Metab Eng 8(1):46–57. https://doi.org/10.1016/j.ymben.2005.09.006

    Article  PubMed  CAS  Google Scholar 

  19. Nor’Aini AR, Shirai Y, Hassan MA, Shimizu K (2006) Investigation on the metabolic regulation of pgi gene knockout Escherichia coli by enzyme activities and intracellular metabolite concentrations. Malaysian J Microbiol 2:24–31

    Google Scholar 

  20. Bautista J, Satrustegui J, Machado A (1979) Evidence suggesting that the NADPH/NADP ratio modulates the splitting of the isocitrate flux between the glyoxylic and tricarboxylic acid cycles, in Escherichia coli. FEBS Lett 105(2):333–336. https://doi.org/10.1016/0014-5793(79)80642-0

    Article  PubMed  CAS  Google Scholar 

  21. Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101(5):881–893. https://doi.org/10.1002/bit.22005

    Article  PubMed  CAS  Google Scholar 

  22. Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71(12):7880–7887. https://doi.org/10.1128/AEM.71.12.7880-7887.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lin H, Bennett GN, San KY (2005) Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol Bioeng 89(2):148–156. https://doi.org/10.1002/bit.20298

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Malaysian Ministry of Higher Education and Universiti Teknologi Malaysia for supporting this research as part of the Fundamental Research Grant Scheme (Grant number: R.J130000.7828.4F720) and the Flagship Grant Scheme (Grant number: Q.J130000.2428.03G57). We would also like to thank Universiti Malaysia Pahang for sponsoring this research via the RDU Grant (Grant number: RDU180307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Saberi Mohamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hon, M.K., Mohamad, M.S., Mohamed Salleh, A.H. et al. Identifying a Gene Knockout Strategy Using a Hybrid of Simple Constrained Artificial Bee Colony Algorithm and Flux Balance Analysis to Enhance the Production of Succinate and Lactate in Escherichia Coli. Interdiscip Sci Comput Life Sci 11, 33–44 (2019). https://doi.org/10.1007/s12539-019-00324-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-019-00324-z

Keywords

Navigation