Skip to main content
Log in

Can diatom girdle band pores act as a hydrodynamic viral defense mechanism?

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Diatoms are microalgae encased in highly structured and regular frustules of porous silica. A long-standing biological question has been the function of these frustules, with hypotheses ranging from them acting as photonic light absorbers to being particle filters. While it has been observed that the girdle band pores of the frustule of Coscinodiscus sp. resemble those of a hydrodynamic drift ratchet, we show using scaling arguments and numerical simulations that they cannot act as effective drift ratchets. Instead, we present evidence that frustules are semi-active filters. We propose that frustule pores simultaneously repel viruses while promoting uptake of ionic nutrients via a recirculating, electroosmotic dead-end pore flow, a new mechanism of “hydrodynamic immunity”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Armbrust, E.V.: The life of diatoms in the world’s oceans. Nature 459(7244), 185–192 (2009)

    Article  ADS  Google Scholar 

  2. Round, F.E., Crawford, R.M., Mann, D.G.: The Diatoms: Biology & Morphology of the Genera. Cambridge University Press, (1990)

  3. Yang, W., Lopez, P.J., Rosengarten, G.: Diatoms: self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 136(1), 42–53 (2011). https://doi.org/10.1039/C0AN00602E

    Article  ADS  Google Scholar 

  4. Losic, D., Rosengarten, G., Mitchell, J.G., Voelcker, N.H.: Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J. Nanosci. Nanotechnol. 6(4), 982–989 (2006)

    Article  Google Scholar 

  5. Mitchell, J.G., Seuront, L., Doubell, M.J., Losic, D., Voelcker, N.H., Seymour, J., Lal, R.: The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS One 8(5), e59548 (2013). https://doi.org/10.1371/journal.pone.0059548

    Article  ADS  Google Scholar 

  6. Stocker, R.: Marine microbes see a sea of gradients. Science 338(6107), 628–633 (2012)

    Article  ADS  Google Scholar 

  7. Raven, J.A., Waite, A.M.: The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol. 162(1), 45–61 (2004). https://doi.org/10.1111/j.1469-8137.2004.01022.x

    Article  Google Scholar 

  8. Losic, D., Mitchell, J.G., Voelcker, N.H.: Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater. 21(29), 2947–2958 (2009). https://doi.org/10.1002/adma.200803778

    Article  Google Scholar 

  9. Kettner, C., Reimann, P., Hänggi, P., Müller, F.: Drift ratchet. Phys. Rev. E 61(1), 312–323 (2000)

    Article  ADS  Google Scholar 

  10. Mathwig, K., Müller, F., Gösele, U.: Particle transport in asymmetrically modulated pores. New J. Phys. 13(3), 033038 (2011)

  11. Matthias, S., Müller, F.: Asymmetric pores in a silicon membrane acting as massively parallel Brownian ratchets. Nature 424(6944), 53–57 (2003). https://doi.org/10.1038/nature01736

  12. Rosengarten, G.: Can we learn from nature to design membranes? The intricate pore structure of the diatom. In: ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, pp. 1371–1378. American Society of Mechanical Engineers

  13. Kucki, M., Fuhrmann-Lieker, T.: Staining diatoms with rhodamine dyes: control of emission colour in photonic biocomposites. J. R. Soc. Interface 9(69), 727–733 (2012). https://doi.org/10.1098/rsif.2011.0424

    Article  Google Scholar 

  14. Losic, D., Short, K., Mitchell, J.G., Lal, R., Voelcker, N.H.: AFM nanoindentations of diatom biosilica surfaces. Langmuir 23(9), 5014–5021 (2007). https://doi.org/10.1021/la062666y

    Article  Google Scholar 

  15. Schindler, M., Talkner, P., Kostur, M., Hänggi, P.: Accumulating particles at the boundaries of a laminar flow. Physica A: Statistical Mechanics and its Applications 385(1), 46–58 (2007). https://doi.org/10.1016/j.physa.2007.06.030

    Article  ADS  Google Scholar 

  16. Golshaei, B., Najafi, A.: Rectified motion in an asymmetric channel: the role of hydrodynamic interactions with walls. Phys. Rev. E 91(2), 022101 (2015)

    Article  ADS  Google Scholar 

  17. Herringer, J., Lester, D., Dorrington, G., Rosengarten, G., Mitchell, J.G.: Hydrodynamic drift ratchet scalability. AlChE (2016)

  18. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, Ser. A 102(715), 7161–7179 (1922). https://doi.org/10.1098/rspa.1922.0078

    Article  Google Scholar 

  19. Kadota, T., Labianca, F.: Gravity-wave-induced pressure fluctuations in the deep ocean. IEEE J. Ocean. Eng. 6(2), 50–58 (1981). https://doi.org/10.1109/JOE.1981.1145487

    Article  ADS  Google Scholar 

  20. Gregg, M.: The microstructure of the ocean. Sci. Am. 228(2), 64–77 (1973)

  21. Koehl, M., Jumars, P.A., Karp-Boss, L.: Algal biophysics. pp. 115- 130 in Norton, T.A.: Out of the Past. British Phycological Association, Belfast (2003)

  22. Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. In: Dokl. Akad. Nauk SSSR 1941, vol. 1, pp. 16–18

  23. Kiørboe, T.: A mechanistic approach to plankton ecology. Princeton University Press, (2008)

  24. Karp-Boss, L., Boss, E., Jumars, P.: Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. 34, 71–108 (1996)

    Google Scholar 

  25. Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centuroni, L.R., Chao, S.-Y., Chang, M.-H., Farmer, D.M., Fringer, O.B., Fu, K.-H., Gallacher, P.C., Graber, H.C., Helfrich, K.R., Jachec, S.M., Jackson, C.R., Klymak, J.M., Ko, D.S., Jan, S., Johnston, T.M.S., Legg, S., Lee, I.H., Lien, R.-C., Mercier, M.J., Moum, J.N., Musgrave, R., Park, J.-H., Pickering, A.I., Pinkel, R., Rainville, L., Ramp, S.R., Rudnick, D.L., Sarkar, S., Scotti, A., Simmons, H.L., St Laurent, L.C., Venayagamoorthy, S.K., Wang, Y.-H., Wang, J., Yang, Y.J., Paluszkiewicz, T., Tang, T.-Y.: The formation and fate of internal waves in the South China Sea. Nature 521(7550), 65–69 (2015). https://doi.org/10.1038/nature14399

    Article  ADS  Google Scholar 

  26. Lazier, J., Mann, K.: Turbulence and the diffusive layers around small organisms. Deep Sea Research Part A: Oceanographic Research Papers 36(11), 1721–1733 (1989)

    Article  ADS  Google Scholar 

  27. Mitchell, J.G., Okubo, A., Fuhrman, J.A.: Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985)

  28. Musielak, M.M., Karp-Boss, L., Jumars, P.A., Fauci, L.J.: Nutrient transport and acquisition by diatom chains in a moving fluid. J. Fluid Mech. 638, 401–421 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Karp-Boss, L., Jumars, P.A.: Motion of diatom chains in steady shear flow. Limnol. Oceanogr. 43(8), 1767–1773 (1998). https://doi.org/10.4319/lo.1998.43.8.1767

    Article  ADS  Google Scholar 

  30. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press (1972)

  31. Pahlow, M., Riebesell, U., Wolf-Gladrow, D.A.: Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnol. Oceanogr. 42(8), 1660–1672 (1997). https://doi.org/10.4319/lo.1997.42.8.1660

    Article  ADS  Google Scholar 

  32. Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Dover Publications, (2005)

  33. Guasto, J.S., Rusconi, R., Stocker, R.: Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44(1), 373–400 (2012). https://doi.org/10.1146/annurev-fluid-120710-101156

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Eppley, R.W., Holmes, R.W., Strickland, J.D.: Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol. 1(2), 191–208 (1967)

    Article  Google Scholar 

  35. Smayda, T.J.: The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. 8, 353–414 (1970).

  36. Smayda, T.J.: Normal and accelerated sinking of phytoplankton in the sea. Mar. Geol. 11(2), 105–122 (1971). https://doi.org/10.1016/0025-3227(71)90070-3

    Article  ADS  Google Scholar 

  37. Walsby, A.E., Holland, D.P.: Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning. J. R. Soc. Interface 3(8), 429–439 (2006). https://doi.org/10.1098/rsif.2005.0106

    Article  Google Scholar 

  38. Gemmell, B.J., Oh, G., Buskey, E.J., Villareal, T.A.: Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake. Proc. R. Soc. B Biol. Sci. 283(1840), (2016). https://doi.org/10.1098/rspb.2016.1126

  39. Rosengarten, G., Herringer, J.: Fluid interactions of diatoms. In: Losic, D. (ed.) Diatom Nanotechnology. The Royal Society of Chemistry, (2017)

  40. Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., Twining, B.S.: Nanominerals, mineral nanoparticles, and earth systems. Science 319(5870), 1631–1635 (2008). https://doi.org/10.1126/science.1141134

    Article  ADS  Google Scholar 

  41. Nagasaki, K.: Dinoflagellates, diatoms, and their viruses. J. Microbiol. 46(3), 235–243 (2008). https://doi.org/10.1007/s12275-008-0098-y

    Article  Google Scholar 

  42. Nagasaki, K., Tomaru, Y., Katanozaka, N., Shirai, Y., Nishida, K., Itakura, S., Yamaguchi, M.: Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom Rhizosolenia setigera. Appl. Environ. Microbiol. 70(2), 704–711 (2004). https://doi.org/10.1128/AEM.70.2.704-711.2004

    Article  Google Scholar 

  43. Yun, S.M., Lee, J.H.: Morphology and distribution of some marine diatoms, family Rhizosoleniaceae, in Korean coastal waters: a genus Rhizosolenia. Algae 25(4), 173–182 (2010)

  44. Losic, D., Pillar, R.J., Dilger, T., Mitchell, J.G., Voelcker, N.H.: Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. J. Porous. Mater. 14(1), 61–69 (2007). https://doi.org/10.1007/s10934-006-9009-y

    Article  Google Scholar 

  45. Xing, Y., Yu, L., Wang, X., Jia, J., Liu, Y., He, J., Jia, Z.: Characterization and analysis of Coscinodiscus genus frustule based on FIB-SEM. Prog. Nat. Sci.: Mater. Int. 27(3), 391–395 (2017). https://doi.org/10.1016/j.pnsc.2017.04.019

    Article  Google Scholar 

  46. Losic, D., Mitchell, J.G., Voelcker, N.H.: Fabrication of gold nanostructures by templating from porous diatom frustules. New J. Chem. 30(6), 908–914 (2006). https://doi.org/10.1039/B600073H

    Article  Google Scholar 

  47. Schmid, A.-M.M., Schulz, D.: Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma 100(3), 267–288 (1979). https://doi.org/10.1007/bf01279316

    Article  Google Scholar 

  48. Yu, Y., Addai-Mensah, J., Losic, D.: Synthesis of self-supporting gold microstructures with three-dimensional morphologies by direct replication of diatom templates. Langmuir 26(17), 14068–14072 (2010). https://doi.org/10.1021/la102083t

    Article  Google Scholar 

  49. Buczkó, K., Ognjanova-Rumenova, N., Magyari, E.: Taxonomy, morphology and distribution of some Aulacoseira taxa in glacial lakes in the south Carpathian region. Polish Botanical J. 55(1), 149–163 (2010)

  50. Fisher, A.E., Berges, J.A., Harrison, P.J.: Does light quality affect the sinking rates of marine diatoms?. J. Phycol. 32(3), 353–360 (1996). https://doi.org/10.1111/j.0022-3646.1996.00353.x

    Article  Google Scholar 

  51. Hamm, C.E.: The evolution of advanced mechanical defenses and potential technological applications of diatom shells. J. Nanosci. Nanotechnol. 5(1), 108–119 (2005)

    Article  Google Scholar 

  52. Lu, J., Sun, C., Wang, Q.J.: Mechanical simulation of a diatom frustule structure. J. Bionic Eng. 12(1), 98–108 (2015). https://doi.org/10.1016/S1672-6529(14)60104-9

    Article  Google Scholar 

  53. Milligan, A.J., Morel, F.M.M.: A proton buffering role for silica in diatoms. Science 297(5588), 1848–1850 (2002). https://doi.org/10.1126/science.1074958

    Article  ADS  Google Scholar 

  54. Morant-Manceau, A., Nguyen, T.L.N., Pradier, E., Tremblin, G.: Carbonic anhydrase activity and photosynthesis in marine diatoms. Eur. J. Phycol. 42(3), 263–270 (2007). https://doi.org/10.1080/09670260701425522

    Article  Google Scholar 

  55. De Tommasi, E., De Stefano, L., Rea, I., Moretti, L., De Stefano, M., Rendina, I.: Light micro-lensing effect in biosilica shells of diatoms microalgae. In: Photonics Europe 2008, International Society for Optics and Photonics, 6992, 69920F (2008)

  56. Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., Sumper, M.: Diatoms as living photonic crystals. Appl. Phys. B 78(3), 257–260 (2004). https://doi.org/10.1007/s00340-004-1419-4

    Article  ADS  Google Scholar 

  57. Hsu, S.-H., Paoletti, C., Torres, M., Ritchie, R.J., Larkum, A.W., Grillet, C.: Light transmission of the marine diatom Coscinodiscus wailesii. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring 2012, International Society for Optics and Photonics, 8339, 83390F (2012)

  58. Ingalls, A.E., Whitehead, K., Bridoux, M.C.: Tinted windows: the presence of the UV absorbing compounds called mycosporine-like amino acids embedded in the frustules of marine diatoms. Geochim. Cosmochim. Acta 74(1), 104–115 (2010)

    Article  ADS  Google Scholar 

  59. Noyes, J., Sumper, M., Vukusic, P.: Light manipulation in a marine diatom. J. Mater. Res. 23(12), 3229–3235 (2008). https://doi.org/10.1557/JMR.2008.0381

    Article  ADS  Google Scholar 

  60. Yamanaka, S., Yano, R., Usami, H., Hayashida, N., Ohguchi, M., Takeda, H., Yoshino, K.: Optical properties of diatom silica frustule with special reference to blue light. J. Appl. Phys. 103(7), 074701 (2008). https://doi.org/10.1063/1.2903342

    Article  ADS  Google Scholar 

  61. Yamanaka, S., Yano, R., Usami, H., Hayashida, N., Ohguchi, M., Takeda, H., Yoshino, K.: Optical properties of diatom silica frustule with special reference to blue light. J. Appl. Phys. 103(7) (2008). doi:https://doi.org/10.1063/1.2903342

  62. Romann, J., Valmalette, J.C., Chauton, M.S., Tranell, G., Einarsrud, M.A., Vadstein, O.: Wavelength and orientation dependent capture of light by diatom frustule nanostructures. Sci. Rep. 5 (2015). doi:https://doi.org/10.1038/srep17403

  63. Maibohm, C., Nielsen, J.H., Rottwitt, K.: Light interaction with nano-structured diatom frustule, from UV-A to NIR. MRS Adv. 1(57), 3811–3816 (2015). https://doi.org/10.1557/adv.2015.15

  64. Valmalette, J.C., Romann, J., Røyset, A., Einarsrud, M.A.: 3D-hyperspectral mapping of light propagation through diatom frustule silica nanostructures. In: 2015 Opto-Electronics and Communications Conference (OECC), June 28 2015–July 2 2015, pp. 1–3

  65. Chen, X., Wang, C., Baker, E., Wang, J., Sun, C.: Understanding the nanophotonic light-trapping structure of diatom frustule for enhanced solar energy conversion: a theoretical and experimental study. In: SPIE BiOS 2014, p. 10.

  66. Hoshyargar, V., Nezameddin Ashrafizadeh, S., Sadeghi, A.: Diffusioosmotic flow in rectangular microchannels. Electrophoresis 37(5–6), 809–817 (2016). https://doi.org/10.1002/elps.201500370

    Article  Google Scholar 

  67. Lin, C.-Y., Chen, F., Yeh, L.-H., Hsu, J.-P.: Salt gradient driven ion transport in solid-state nanopores: the crucial role of reservoir geometry and size. Phys. Chem. Chem. Phys. 18(43), 30160–30165 (2016). https://doi.org/10.1039/C6CP06459K

    Article  Google Scholar 

  68. Keh, H.J., Ma, H.C.: Diffusioosmosis of electrolyte solutions in fine capillaries. Colloids Surf. A Physicochem. Eng. Asp. 233(1–3), 87–95 (2004). https://doi.org/10.1016/j.colsurfa.2003.11.014

    Article  Google Scholar 

  69. Velegol, D., Garg, A., Guha, R., Kar, A., Kumar, M.: Origins of concentration gradients for diffusiophoresis. Soft Matter 12(21), 4686–4703 (2016). https://doi.org/10.1039/C6SM00052E

    Article  ADS  Google Scholar 

  70. Chen, T., Xu, C.: Control-oriented modeling of colloid transport by solute gradients in dead-end channels. Asia Pac. J. Chem. Eng. (2017). https://doi.org/10.1002/apj.2068

  71. Shin, S., Um, E., Sabass, B., Ault, J.T., Rahimi, M., Warren, P.B., Stone, H.A.: Size-dependent control of colloid transport via solute gradients in dead-end channels. Proc. Natl. Acad. Sci. U.S.A. 113(2), 257–261 (2016). https://doi.org/10.1073/pnas.1511484112

  72. Keh, H.J.: Diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions. Curr. Opin. Colloid Interface Sci. 24, 13–22 (2016). https://doi.org/10.1016/j.cocis.2016.05.008

    Article  Google Scholar 

  73. Tanaka, Y., Nakatsuma, D., Harada, H., Ishida, M., Matsuda, Y.: Localization of soluble β-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Sorting to the chloroplast and cluster formation on the girdle lamellae. Plant Physiol. 138(1), 207–217 (2005). https://doi.org/10.1104/pp.104.058982

  74. Shen, C., Hopkinson, B.M., Posewitz, M.: Size scaling of extracellular carbonic anhydrase activity in centric marine diatoms. J. Phycol. 51(2), 255–263 (2015). https://doi.org/10.1111/jpy.12269

    Article  Google Scholar 

  75. Martin, C.L., Tortell, P.D.: Bicarbonate transport and extracellular carbonic anhydrase activity in Bering Sea phytoplankton assemblages: results from isotope disequilibrium experiments. Limnol. Oceanogr. 51(5), 2111–2121 (2006). https://doi.org/10.4319/lo.2006.51.5.2111

    Article  ADS  Google Scholar 

  76. Morel, F.M.M., Reinfelder, J.R., Roberts, S.B., Chamberlain, C.P., Lee, J.G., Yee, D.: Zinc and carbon co-limitation of marine phytoplankton. Nature 369, 740 (1994). https://doi.org/10.1038/369740a0

    Article  ADS  Google Scholar 

  77. Hopkinson, B.M., Meile, C., Shen, C.: Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role. Plant Physiol. 162(2), 1142–1152 (2013). https://doi.org/10.1104/pp.113.217737

    Article  Google Scholar 

  78. Smith-Harding, T.J., Beardall, J., Mitchell, J.G.: The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri. J. Phycol. 53(6), 1159–1170 (2017). https://doi.org/10.1111/jpy.12572

    Article  Google Scholar 

  79. Schoch, R.B., Han, J., Renaud, P.: Transport phenomena in nanofluidics. Rev. Mod. Phys. 80(3), 839 (2008)

    Article  ADS  Google Scholar 

  80. Prieve, D.C., Anderson, J.L., Ebel, J.P., Lowell, M.E.: Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247–269 (1984). https://doi.org/10.1017/S0022112084002330

    Article  ADS  MATH  Google Scholar 

  81. Prieve, D.C., Roman, R.: Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J. Chem. Soc., Faraday Trans. 2: Mole Chem Phys 83(8), 1287–1306 (1987). https://doi.org/10.1039/F29878301287

    Article  Google Scholar 

  82. Probstein, R.F.: Physicochemical Hydrodynamics. Wiley, New York (1994)

    Book  Google Scholar 

  83. Haller, G.: An objective definition of a vortex. J. Fluid Mech. 525, 1–26 (2005). https://doi.org/10.1017/S0022112004002526

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Okuda, K.: Structure and phylogeny of cell coverings. J. Plant Res. 115(4), 283–288 (2002)

    Article  Google Scholar 

  85. Tesson, B., Hildebrand, M.: Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLoS One 8(4), e61675 (2013)

    Article  ADS  Google Scholar 

  86. Pletikapić, G., Radić, T.M., Zimmermann, A.H., Svetličić, V., Pfannkuchen, M., Marić, D., Godrijan, J., Žutić, V.: AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & JC Lewin. J. Mol. Recognit. 24(3), 436–445 (2011)

    Article  Google Scholar 

  87. Jumars, P.A.: Concepts in biological oceanography: an interdisciplinary primer. Limnol. Oceanogr. 38(8), 1842–1843 (1993). https://doi.org/10.4319/lo.1993.38.8.1842

    Article  Google Scholar 

  88. Yang, Y., Jonas, A.-M., Dusan, L.: Functionalized diatom silica microparticles for removal of mercury ions. Sci. Technol. Adv. Mater. 13(1), 015008 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

J. G. Mitchell, from Flinders University, was instrumental in biological concepts in this manuscript and help draft the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J. W. Herringer carried out the numerical modeling, participated in data analysis and drafted the manuscript; G. Rosengarten participated in numerical modeling, formulating the direction and concept of the paper, and drafted the manuscript; D. Lester participated in numerical modeling, formulating the direction and concept of the paper, and drafted the manuscript; G. E. Dorrington participated in formulating the direction and concept of the paper and drafted the manuscript.

Corresponding author

Correspondence to J. W. Herringer.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herringer, J.W., Lester, D., Dorrington, G.E. et al. Can diatom girdle band pores act as a hydrodynamic viral defense mechanism?. J Biol Phys 45, 213–234 (2019). https://doi.org/10.1007/s10867-019-09525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-019-09525-5

Keywords

PACS

Navigation