Skip to main content
Log in

Global diffusion limitations during the initial phase of the formation of a protein corona around nanoparticles

  • Brief Communication
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Herein, I illustrate analytically how the global diffusion limitations can influence the first phase of the protein-corona formation at nanoparticles under conditions of intravascular injection. In particular, the concentrations of proteins near the boundaries of the injection region are shown to be comparable with those far from the region. In contrast, the concentrations of proteins inside the injection region may be dramatically smaller than those outside, and the ratio of these two concentrations for proteins of different size may be much higher, by a few orders of magnitude, for smaller proteins. These differences in the spatial distribution of proteins are expected to play a key role in the Vroman effect at the onset of the protein-corona formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ke, P.C., Lin, S., Parak, W.J., Davis, T.P., Caruso, F.: A decade of the protein corona. ACS Nano 11, 11773–11776 (2017)

    Article  Google Scholar 

  2. Rodriguez-Quijada, C., Sánchez-Purrá, M., de Puig, H., Hamad-Schifferli, K.: Physical properties of biomolecules at the nanomaterial interface. J. Phys. Chem. B 122, 2827–2840 (2018)

    Article  Google Scholar 

  3. Zhdanov, V.P.: Formation of a protein corona around nanoparticles. Curr. Opin. Coll. Interf. Sci. 41, 95–103 (2019)

    Article  Google Scholar 

  4. Rabe, M., Verdes, D., Seeger, S.: Understanding protein adsorption phenomena at solid surfaces. Adv. Coll. Interf. Sci. 162, 87–106 (2011)

    Article  Google Scholar 

  5. Kim, J.: Mathematical modeling approaches to describe the dynamics ofprotein adsorption at solid interfaces. Coll. Surf. B: Biointerf. 162, 370–379 (2018)

    Article  Google Scholar 

  6. Dell’Orco, D., Lundqvist, M., Oslakovic, C., Cedervall, T., Linse, S.: Modeling the time evolution of the nanoparticle-protein corona in a sody fluid. PLoS ONE 5, e10949 (2010)

    Article  ADS  Google Scholar 

  7. Sahneh, F.D., Scoglio, C., Riviere, J.: Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations. PLoS ONE 8, e64690 (2013)

    Article  ADS  Google Scholar 

  8. Vilanova, O., Mittag, J.J., Kelly, P.M., Milani, S., Dawson, K.A., Rädler, J.O., Franzese, G.: Understanding the kinetics of protein-nanoparticle corona formation. ACS Nano 10, 10842–10850 (2016)

    Article  Google Scholar 

  9. Zhdanov, V.P., Cho, N.-J.: Kinetics of the formation of a protein corona around nanoparticles. Math. Biosci. 282, 82–90 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Angioletti-Uberti, S., Ballauff, M., Dzubiella, J.: Competitive adsorption of multiple proteins to nanoparticles: the Vroman effect revisited. Molec. Phys. 116, 3154–3163 (2018)

    Article  ADS  Google Scholar 

  11. Tavanti, F., Pedone, A., Menziani, M.C.: Competitive binding of proteins to gold nanoparticles disclosed by molecular dynamics simulations. J. Phys. Chem. C 119, 22172–22180 (2015)

    Article  Google Scholar 

  12. Shao, Q., Hall, C.K.: Allosteric effects of gold nanoparticles on human serum albumin. Nanoscale 9, 380–390 (2017)

    Article  Google Scholar 

  13. Xiao, H.F., et al.: Atomistic simulation of the coupled adsorption and unfolding of protein GB1 on the polystyrenes nanoparticle surface. Sci. China: Phys. Mech. Astr. 61, 038711 (2018)

    ADS  Google Scholar 

  14. Lu, C.F., Nadarajah, A., Chittur, K.K.: A comprehensive model of multiprotein adsorption on surfaces. J. Coll. Interf. Sci. 168, 152–161 (1994)

    Article  ADS  Google Scholar 

  15. Ye, H., Shen, Z, Yu, L., Wei, M., Li, Y.: Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine. Proc. R. Soc. A 474, 0845 (2017)

    Google Scholar 

  16. Mouffouk, F., Alrefae, T., Challa, D.P., Sini, M.: Modeling and simulation of the motion of nanoparticles in cylindrical capillaries allowing particle-to-wall interactions. Math. Meth. Appl. Sci. 40, 3111–3128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carlander, U., Li, D., Jolliet, O., Emond, C., Johanson, G.: Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. Internat. J. Nanomed. 11, 625–640 (2016)

    Article  Google Scholar 

  18. Muzykantov, V.R.: Targeted therapeutics and nanodevices for vascular drug delivery: Quo vadis? IUBMB Life 63, 583–585 (2011)

    Article  Google Scholar 

  19. Howard, M., Zern, B.J., Anselmo, A.C., Shuvaev, V.V., Mitragotri, S., Muzykantov, V.: Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS Nano 8, 4100–4132 (2014)

    Article  Google Scholar 

  20. Hadjidemetriou, M., Al-Ahmady, Z., Kostarelos, K.: Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale 8, 6948–6957 (2016)

    Article  ADS  Google Scholar 

  21. Konduru, N.V., Murdaugh, K.M., Swami, A., Jimenez, R.J., Donaghey, T.C., Demokritou, P., Brain, J.D., Molina, R.M.: Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation. Nanotoxicology 10, 720–727 (2016)

    Article  Google Scholar 

  22. Poller, W.C., et al.: Uptake of citrate-coated iron oxide nanoparticles into atherosclerotic lesions in mice occurs via accelerated transcytosis through plaque endothelial cells. Nano Res. 9, 3437–3452 (2016)

    Article  Google Scholar 

  23. Pochert, A., Vernikouskaya, I., Pascher, F., Rasche, V., Lindn, M.: Cargo-influences on the biodistribution of hollow mesoporous silica nanoparticles as studied by quantitative 19F-magnetic resonance imaging. J. Coll. Interf. Sci. 488, 1–9 (2017)

    Article  ADS  Google Scholar 

  24. Grenier, P., Viana, I.M.D.O., Lima, E.M., Bertrand, N.: Anti-polyethylene glycol antibodies alter the protein corona deposited on nanoparticles and the physiological pathways regulating their fate in vivo. J. Contr. Release 287, 121–131 (2018)

    Article  Google Scholar 

  25. Bahamonde, J., Brenseke, B., Chan, M.J., Kent, R., Vikesland, P.J., Prater, M.R.: Gold nanoparticle toxicity in mice and rats: species differences. Toxicol. Pathol. 46, 431–443 (2018)

    Article  Google Scholar 

  26. Gomez-Garcia, M.J., et al.: Nanoparticle localization in blood vessels: Dependence on fluid shear stress, flow disturbances, and flow-induced changes in endothelial physiology. Nanoscale 10, 15249–15261 (2018)

    Article  Google Scholar 

  27. Yeo, E.L.L., Thong, P.S.P., Soo, K.C., Kah, J.C.Y.: Protein corona in drug delivery for multimodal cancer therapy in vivo. Nanoscale 10, 2461–2472 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Zhdanov.

Ethics declarations

Conflict of interests

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, V.P. Global diffusion limitations during the initial phase of the formation of a protein corona around nanoparticles. J Biol Phys 45, 173–181 (2019). https://doi.org/10.1007/s10867-019-09522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-019-09522-8

Keywords

Navigation