Skip to main content
Log in

Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The antibacterial effect of ZnO nanoparticles is tested against Staphylococcus aureus, (a Gram-positive pathogenic bacterium) from a particle-size, concentration, and surface-defects point of view. Activation of antibacterial activity was achieved by standard well diffusion agar and minimum inhibitory concentration procedures. Our results show that smaller-sized particles are more effective inhibitors of bacterial activity when used in a certain optimum concentration. To reveal the underlying mechanism of the observed size and concentration-dependent bacterial activity inhibition, we measured the concentrations of Zn2+ ions released in each suspension by an inductive couple plasma optical emission spectrophotometer. Additionally, photoluminance spectra of our samples show significant surface defects (mainly oxygen vacancies) that generate reactive oxygen species. The underlying mechanism of the observed size- and concentration-dependent bacterial activity inhibition is attributed primarily to the release of Zn2+ ions and generation of reactive oxygen species that interact and penetrate the cell membrane, causing lethal damage to the cell. Finally, the antibacterial effectiveness and maximum sensitivity of our nanoparticles is confirmed by optical density measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Williams, M.H., Stephen, A.: Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ. Pollut. 172, 76–85 (2013). https://doi.org/10.1016/j.envpol.2012.08.011

    Article  Google Scholar 

  2. Titiwat, F., Triampo, W.: The effects of TiO2 nanoparticles on tumor cell colonies: fractal dimension and morphological properties. Int. J. Biomed. Sci. 2, 67–74 (2007)

    Google Scholar 

  3. Koehn, F.E., Carter, G.T.: The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206–220 (2005). https://doi.org/10.1038/nrd1657

    Article  Google Scholar 

  4. Nagarajan, P., Vijayaraghavan, R.: Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9, 035004 (2008). https://doi.org/10.1088/1468-6996/9/3/035004

    Article  Google Scholar 

  5. Reddy Yadav, L.S., Raghavendra, M., Udayabhanu, Manjunath, K., Nagaraju, G.: Photocatalytic, biodiesel, electrochemical sensing properties and formylation reactions of ZnO nanoparticles synthesized via ecofriendly green synthesis method. J. Mater. Sci. Mater. Electron. 29, 8747–8759 (2018). https://doi.org/10.1007/s10854-018-8891-9

    Article  Google Scholar 

  6. Reddy Yadav, L.S., Raghavendra, M., Sudheer Kumar, K.H., Dhananjaya, N., Nagaraju, G.: Biosynthesised ZnO: Dy3+ nanoparticles: biodiesel properties and reusable catalyst for N-formylation of aromatic amines with formic acid. Eur. Phys. J. Plus 133, 153 (2018). https://doi.org/10.1140/epjp/i2018-11963-6

  7. Pasquet, J., Chevalier, Y., Couval, E., Bouvier, D., Noizet, G., Morlière, C., Bolzinger, M.A.: Antimicrobial activity of zinc oxide particles on five micro-organisms of the challenge tests related to their physicochemical properties. Int. J. Pharm. 460, 92–100 (2014). https://doi.org/10.1016/j.ijpharm.2013.10.031

    Article  Google Scholar 

  8. Yamamoto, O.: Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643–646 (2001). https://doi.org/10.1016/S1466-6049(01)00197-0

    Article  Google Scholar 

  9. Wang, J., Chen, R., Xiang, L., Komarneni, S.: Synthesis properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram. Int. 44, 7357–7377 (2018). https://doi.org/10.1016/j.ceramint.2018.02.013

    Article  Google Scholar 

  10. Moussa, H., Merlin, C., Dezanet, C., Balan, L., Medjahdi, G., Ben-Attia, M., Schneider, R.: Trace amounts of Cu2+ ions influence ROS production and cytotoxicity of ZnO quantum dots. J. Hazard. Mater. 304, 532–542 (2015). https://doi.org/10.1016/j.jhazmat.2015.11.013

    Article  Google Scholar 

  11. Jin, T., Sun, D., Su, Y., Zhang, H., Sue, H.J.: Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7. J. Food Sci. 74, 46–52 (2009). https://doi.org/10.1111/j.1750-3841.2008.01013.x

    Article  Google Scholar 

  12. Shah, S.N., Ali, S.I., Ali, S.R., Naeem, M., Bibi, Y., Ali, S.R., Raza, S.M., Khan, Y., Sherwani, S.K.: Synthesis and characterization of zinc oxide nanoparticles for antibacterial applications. J.. Basic Appl. Sci. 12, 205–210 (2016). https://doi.org/10.6000/1927-5129.2016.12.31

    Article  Google Scholar 

  13. Mei, L., Zhu, L., Lin, D.: Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983 (2011). https://doi.org/10.1021/es102624t

    Article  ADS  Google Scholar 

  14. Naeem, M., Hasanain, S.K., Kobayashi, M., Ishida, Y., Fujimori, A., Scott, B., Shah, S.I.: Effect of reducing atmosphere on the magnetism of Zn1−xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Nanotechnology 17, 2675 (2006). https://doi.org/10.1088/0957-4484/17/10/039

    Article  ADS  Google Scholar 

  15. Malevu, T.D., Ocaya, R.O.: Effect of annealing temperature on structural, morphology and optical properties of ZnO nano-needles prepared by zinc-air cell system method. Int. J. Electrochem. Sci. 10, 1752–1761 (2015)

    Google Scholar 

  16. Yuan, K., Yu, Q.X., Gao, Q.Q., Wang, J., Zhang, X.T.: A threshold of \( {V}_0^{+}/{V}_0^{++} \) to room temperature ferromagnetism of hydrogenated Mn doped ZnO nanoparticles. Appl. Surf. Sci. 258, 3350–3353 (2012). https://doi.org/10.1016/j.apsusc.2011.08.080

    Article  ADS  Google Scholar 

  17. Viswanatha, R., Chakraborty, S., Basu, S., Sarma, D.D.: Blue-emitting copper-doped zinc oxide nanocrystals. J. Phys. Chem. B 110, 22310–22312 (2006). https://doi.org/10.1021/jp065384f

    Article  Google Scholar 

  18. Rajesh, S., Reddy Yadav, L.S., Thyagarajan, K.: Structural optical thermal and photocatalytic properties of ZnO nanoparticles of betel leave by using green synthesis method. J. Nanostruct. 6, 250–255 (2016). https://doi.org/10.7508/JNS.2016.03.010

    Article  Google Scholar 

  19. Ye, J.D., Gu, S.L., Qin, F., Zhu, S.M., Liu, S.M., Zhou, X., Liu, W., Hu, L.Q., Zhang, R., Shi, Y., Zheng, Y.D.: Correlation between green luminescence and morphology evolution of ZnO films. Appl. Phys. A Mater. Sci. Process. 81, 759–762 (2005). https://doi.org/10.1007/s00339-004-2996-0

    Article  ADS  Google Scholar 

  20. Wang, M., Na, E.K., Kim, J.S., Kim, E.J., Hahn, S.H., Park, C., Koo, K.K.: Photoluminescence of ZnO nanoparticles prepared by a low-temperature colloidal chemistry method. Mater. Lett. 61, 4094–4096 (2007). https://doi.org/10.1016/j.matlet.2007.01.026

    Article  Google Scholar 

  21. Naeem, M., Hasanain, S.K., Mumtaz, A.: Electrical transport and optical studies of ferromagnetic cobalt doped ZnO nanoparticles exhibiting a metal–insulator transition. J. Phys. Condens. Matter 20, 025210 (2008). https://doi.org/10.1088/0953-8984/20/02/025210

    Article  ADS  Google Scholar 

  22. Naeem, M., Qaseem, S., Gul, I.H., Maqsood, A.: Study of active surface defects in Ti-doped ZnO nanoparticles. J. Appl. Phys. 107, 124303 (2010). https://doi.org/10.1063/1.3432571

    Article  ADS  Google Scholar 

  23. Reddy Yadav, L.S., Kumar, D., Kavitha, C., Rajanaika, H., Daruka Prasad, B., Nagabhushana, H., Nagaraju, G.: Antibacterial and photocatalytic activities of ZnO nanoparticles: synthesized using water melon juice as fuel. Int. J. Nanosci. 15, 1650006 (2015). https://doi.org/10.1142/S0219581X1650006X

    Article  Google Scholar 

  24. Reddy Yadav, L.S., Archana, B., Lingaraju, K., Kavitha, C., Suresh, D., Nagabhushana, H., Nagaraju, G.: Electrochemical sensing, photocatalytic and biological activities of ZnO nanoparticles: synthesis via green chemistry route. Int. J. Nanosci. 15, 1650013 (2016). https://doi.org/10.1142/S0219581X16500137

    Article  Google Scholar 

  25. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  Google Scholar 

  26. Li, M., Zhu, L., Lin, D.: Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983 (2011). https://doi.org/10.1021/es102624t

    Article  ADS  Google Scholar 

  27. Lipovsky, A., Nitzan, Y., Gedanken, A., Lubart, R.: Antifungal activity of ZnO nanoparticles - the role of ROS mediated cell injury. Nanotechnology 22, 105101 (2011). https://doi.org/10.1088/0957-4484/22/10/105101

    Article  ADS  Google Scholar 

  28. Jiang, W., Mashayekhi, H., Xing, B.: Bacterial toxicity comparison between nano and micro-scaled oxide particles. Environ. Pollut. 157, 1619–1925 (2009). https://doi.org/10.1016/j.envpol.2008.12.025

    Article  Google Scholar 

  29. Padmavathy, N., Vijayaraghavan, R.: Enhanced bioactivity of ZnO nanoparticles - an antimicrobial study. Sci. Technol. Adv. Mater. 9, 035004 (2008). https://doi.org/10.1088/1468-6996/9/3/035004

    Article  Google Scholar 

  30. Dwivedi, S., Wahab, R., Khan, F., Mishra, Y.K., Musarrat, J., Al-Khedhairy, A.A.: Reactive oxygen species-mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9, 111289 (2014). https://doi.org/10.1371/journal.pone.0111289

    Article  ADS  Google Scholar 

  31. Zhang, H., Shan, Y., Dong, L.: A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer. J. Biomed. Nanotechnol. 10, 1450–1457 (2014)

    Article  Google Scholar 

  32. Zhang, H., Chen, B., Jiang, H., Wang, C., Wang, H., Wang, X.: A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32, 1906–1194 (2011). https://doi.org/10.1016/j.biomaterials.2010.11.027

    Article  Google Scholar 

  33. Wu, J.M., Kao, W.T.: Heterojunction nanowires of AgxZn1-xO–ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J. Phys. Chem. C 119, 1433 (2015). https://doi.org/10.1021/jp510259j

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naeem.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqvi, QuA., Kanwal, A., Qaseem, S. et al. Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. J Biol Phys 45, 147–159 (2019). https://doi.org/10.1007/s10867-019-9520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-019-9520-4

Keywords

Navigation