Skip to main content

Advertisement

Log in

Modeling the interplay between DNA-PK, Artemis, and ATM in non-homologous end-joining repair in G1 phase of the cell cycle

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Modeling a biological process equips us with more comprehensive insight into the process and a more advantageous experimental design. Non-homologous end joining (NHEJ) is a major double-strand break (DSB) repair pathway that occurs throughout the cell cycle. The objective of the current work is to model the fast and slow phases of NHEJ in G1 phase of the cell cycle following exposure to ionizing radiation (IR). The fast phase contains the major components of NHEJ; Ku70/80 complex, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and XLF/XRCC4/ligase IV complex (XXL). The slow phase in G1 phase of the cell cycle is associated with more complex lesions and involves ATM and Artemis proteins in addition to the major components. Parameters are mainly obtained from experimental data. The model is successful in predicting the kinetics of DSB foci in 13 normal, ATM-deficient, and Artemis-deficient mammalian fibroblast cell lines in G1 phase of the cell cycle after exposure to low doses of IR. The involvement of ATM provides the model with the potency to be connected to different signaling pathways. Ku70/80 concentration and DNA-binding rate as well as XXL concentration and enzymatic activity are introduced as the best targets for affecting NHEJ DSB repair process. On the basis of the current model, decreasing concentration and DNA binding rate of DNA-PKcs is more effective than inhibiting its activity towards the Artemis protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATM:

Ataxia telangiectasia mutated

CC:

Correlation coefficient

DNA-PKcs:

DNA-dependent protein kinase catalytic subunit

DSB:

Double-strand break

HR:

Homologous recombination

IR:

Ionizing radiation

Ku:

Ku70/80 complex

MEF:

Mouse embryonic fibroblast

NHEJ:

Non-homologous end joining

PIKK:

Phosphatidylinositol 3-kinase-related kinase

XLF:

XRCC4-like factor

XXL:

XLF/XRCC4/ligase IV complex

References

  1. Hall, E.J., Giaccia, A.J.: Radiobiology for the Radiologist. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  2. Srivastava, M., Raghavan, S.C.: DNA double-strand break repair inhibitors as cancer therapeutics. Chem. Biol. 22(1), 17–29 (2015)

    Article  Google Scholar 

  3. Shrivastav, M., De Haro, L.P., Nickoloff, J.A.: Regulation of DNA double-strand break repair pathway choice. Cell Res. 18(1), 134–147 (2008)

    Article  Google Scholar 

  4. Walker, J.R., Corpina, R.A., Goldberg, J.: Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847), 607–614 (2001)

    Article  ADS  Google Scholar 

  5. Yoo, S., Dynan, W.S.: Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res. 27(24), 4679–4686 (1999)

    Article  Google Scholar 

  6. Uematsu, N., Weterings, E., Yano, K., Morotomi-Yano, K., Jakob, B., Taucher-Scholz, G., Mari, P.O., van Gent, D.C., Chen, B.P., Chen, D.J.: Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J. Cell Biol. 177(2), 219–229 (2007)

    Article  Google Scholar 

  7. Ahnesorg, P., Smith, P., Jackson, S.P.: XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124(2), 301–313 (2006)

    Article  Google Scholar 

  8. Grawunder, U., Wilm, M., Wu, X., Kulesza, P., Wilson, T.E., Mann, M., Lieber, M.R.: Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388(6641), 492–495 (1997)

    Article  ADS  Google Scholar 

  9. Tsai, C.J., Kim, S.A., Chu, G.: Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends. Proc. Natl. Acad. Sci. U. S. A. 104(19), 7851–7856 (2007)

    Article  ADS  Google Scholar 

  10. Riballo, E., Kuhne, M., Rief, N., Doherty, A., Smith, G.C., Recio, M.J., Reis, C., Dahm, K., Fricke, A., Krempler, A., Parker, A.R., Jackson, S.P., Gennery, A., Jeggo, P.A., Lobrich, M.: A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol. Cell 16(5), 715–724 (2004)

    Article  Google Scholar 

  11. Goodarzi, A.A., Noon, A.T., Deckbar, D., Ziv, Y., Shiloh, Y., Lobrich, M., Jeggo, P.A.: ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31(2), 167–177 (2008)

    Article  Google Scholar 

  12. Brandsma, I., Gent, D.C.: Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr. 3(1), 9 (2012)

    Article  Google Scholar 

  13. Darroudi, F., Wiegant, W., Meijers, M., Friedl, A.A., van der Burg, M., Fomina, J., van Dongen, J.J., van Gent, D.C., Zdzienicka, M.Z.: Role of Artemis in DSB repair and guarding chromosomal stability following exposure to ionizing radiation at different stages of cell cycle. Mutat. Res. 615(1–2), 111–124 (2007)

    Article  Google Scholar 

  14. Kuhne, M., Riballo, E., Rief, N., Rothkamm, K., Jeggo, P.A., Lobrich, M.: A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res. 64(2), 500–508 (2004)

    Article  Google Scholar 

  15. Sokhansanj, B.A., Rodrigue, G.R., Fitch, J.P., Wilson III, D.M.: A quantitative model of human DNA base excision repair. I. Mechanistic insights. Nucleic Acids Res. 30(8), 1817–1825 (2002)

    Article  Google Scholar 

  16. Taleei, R., Weinfeld, M., Nikjoo, H.: A kinetic model of single-strand annealing for the repair of DNA double-strand breaks. Radiat. Prot. Dosim. 143(2–4), 191–195 (2011)

    Article  Google Scholar 

  17. Politi, A., Mone, M.J., Houtsmuller, A.B., Hoogstraten, D., Vermeulen, W., Heinrich, R., van Driel, R.: Mathematical modeling of nucleotide excision repair reveals efficiency of sequential assembly strategies. Mol. Cell 19(5), 679–690 (2005)

    Article  Google Scholar 

  18. Kesseler, K.J., Kaufmann, W.K., Reardon, J.T., Elston, T.C., Sancar, A.: A mathematical model for human nucleotide excision repair: damage recognition by random order assembly and kinetic proofreading. J. Theor. Biol. 249(2), 361–375 (2007)

    Article  MathSciNet  Google Scholar 

  19. Crooke, P.S., Parl, F.F.: A mathematical model for DNA damage and repair. J Nucleic Acids (2010). https://doi.org/10.4061/2010/352603

  20. Rahmanian, S., Taleei, R., Nikjoo, H.: Radiation induced base excision repair (BER): a mechanistic mathematical approach. DNA Repair (Amst.) 22, 89–103 (2014)

    Article  Google Scholar 

  21. Nagel, Z.D., Kitange, G.J., Gupta, S.K., Joughin, B.A., Chaim, I.A., Mazzucato, P., Lauffenburger, D.A., Sarkaria, J.N., Samson, L.D.: DNA repair capacity in multiple pathways predicts chemoresistance in glioblastoma multiforme. Cancer Res. 77(1), 198–206 (2017)

    Article  Google Scholar 

  22. Friedland, W., Jacob, P., Kundrat, P.: Mechanistic simulation of radiation damage to DNA and its repair: on the track towards systems radiation biology modelling. Radiat. Prot. Dosim. 143(2–4), 542–548 (2011)

    Article  Google Scholar 

  23. Friedland, W., Kundrat, P., Jacob, P.: Stochastic modelling of DSB repair after photon and ion irradiation. Int. J. Radiat. Biol. 88(1–2), 129–136 (2012)

    Article  Google Scholar 

  24. Cucinotta, F.A., Pluth, J.M., Anderson, J.A., Harper, J.V., O’Neill, P.: Biochemical kinetics model of DSB repair and induction of gamma-H2AX foci by non-homologous end joining. Radiat. Res. 169(2), 214–222 (2008)

    Article  ADS  Google Scholar 

  25. Li, Y., Cucinotta, F.A.: Modeling non-homologous end joining. J. Theor. Biol. 283(1), 122–135 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Taleei, R., Nikjoo, H.: Repair of the double-strand breaks induced by low energy electrons: a modelling approach. Int. J. Radiat. Biol. 88(12), 948–953 (2012)

    Article  Google Scholar 

  27. Taleei, R., Nikjoo, H.: The non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks: I. A mathematical model. Radiat. Res. 179(5), 530–539 (2013)

    Article  ADS  Google Scholar 

  28. Taleei, R., Girard, P.M., Sankaranarayanan, K., Nikjoo, H.: The non-homologous end-joining (NHEJ) mathematical model for the repair of double-strand breaks: II. Application to damage induced by ultrasoft X-rays and low-energy electrons. Radiat. Res. 179(5), 540–548 (2013)

    Article  ADS  Google Scholar 

  29. Dolan, D., Nelson, G., Zupanic, A., Smith, G., Shanley, D.: Systems modelling of NHEJ reveals the importance of redox regulation of Ku70/80 in the dynamics of DNA damage foci. PLoS One 8(2), e55190 (2013)

    Article  ADS  Google Scholar 

  30. Taleei, R., Nikjoo, H.: Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Mutat. Res. 756(1–2), 206–212 (2013)

    Article  Google Scholar 

  31. Li, Y., Reynolds, P., O’Neill, P., Cucinotta, F.A.: Modeling damage complexity-dependent non-homologous end-joining repair pathway. PLoS One 9(2), e85816 (2014)

    Article  ADS  Google Scholar 

  32. Belov, O.V., Krasavin, E.A., Lyashko, M.S., Batmunkh, M., Sweilam, N.H.: A quantitative model of the major pathways for radiation-induced DNA double-strand break repair. J. Theor. Biol. 366, 115–130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mohapatra, S., Kawahara, M., Khan, I.S., Yannone, S.M., Povirk, L.F.: Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis. Nucleic Acids Res. 39(15), 6500–6510 (2011)

    Article  Google Scholar 

  34. Rothkamm, K., Lobrich, M.: Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl. Acad. Sci. U. S. A. 100(9), 5057–5062 (2003)

    Article  ADS  Google Scholar 

  35. Sun, J., Lee, K.J., Davis, A.J., Chen, D.J.: Human Ku70/80 protein blocks exonuclease 1-mediated DNA resection in the presence of human Mre11 or Mre11/Rad50 protein complex. J. Biol. Chem. 287(7), 4936–4945 (2012)

    Article  Google Scholar 

  36. Chan, D.W., Chen, B.P., Prithivirajsingh, S., Kurimasa, A., Story, M.D., Qin, J., Chen, D.J.: Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev. 16(18), 2333–2338 (2002)

    Article  Google Scholar 

  37. West, R.B., Yaneva, M., Lieber, M.R.: Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol. Cell. Biol. 18(10), 5908–5920 (1998)

    Article  Google Scholar 

  38. Mari, P.O., Florea, B.I., Persengiev, S.P., Verkaik, N.S., Bruggenwirth, H.T., Modesti, M., Giglia-Mari, G., Bezstarosti, K., Demmers, J.A., Luider, T.M., Houtsmuller, A.B., van Gent, D.C.: Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc. Natl. Acad. Sci. U. S. A. 103(49), 18597–18602 (2006)

    Article  ADS  Google Scholar 

  39. Nick McElhinny, S.A., Snowden, C.M., McCarville, J., Ramsden, D.A.: Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol. 20(9), 2996–3003 (2000)

    Article  Google Scholar 

  40. Yano, K., Morotomi-Yano, K., Wang, S.Y., Uematsu, N., Lee, K.J., Asaithamby, A., Weterings, E., Chen, D.J.: Ku recruits XLF to DNA double-strand breaks. EMBO Rep. 9(1), 91–96 (2008)

    Article  Google Scholar 

  41. Reynolds, P., Anderson, J.A., Harper, J.V., Hill, M.A., Botchway, S.W., Parker, A.W., O’Neill, P.: The dynamics of Ku70/80 and DNA-PKcs at DSBs induced by ionizing radiation is dependent on the complexity of damage. Nucleic Acids Res. 40(21), 10821–10831 (2012)

    Article  Google Scholar 

  42. Hsu, H.L., Yannone, S.M., Chen, D.J.: Defining interactions between DNA-PK and ligase IV/XRCC4. DNA Repair (Amst) 1(3), 225–235 (2002)

    Article  Google Scholar 

  43. Calsou, P., Delteil, C., Frit, P., Drouet, J., Salles, B.: Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J. Mol. Biol. 326(1), 93–103 (2003)

    Article  Google Scholar 

  44. Ma, Y., Pannicke, U., Schwarz, K., Lieber, M.R.: Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108(6), 781–794 (2002)

    Article  Google Scholar 

  45. Wang, J., Pluth, J.M., Cooper, P.K., Cowan, M.J., Chen, D.J., Yannone, S.M.: Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair (Amst) 4(5), 556–570 (2005)

    Article  Google Scholar 

  46. Ma, Y., Pannicke, U., Lu, H., Niewolik, D., Schwarz, K., Lieber, M.R.: The DNA-dependent protein kinase catalytic subunit phosphorylation sites in human Artemis. J. Biol. Chem. 280(40), 33839–33846 (2005)

    Article  Google Scholar 

  47. Zhang, X., Succi, J., Feng, Z., Prithivirajsingh, S., Story, M.D., Legerski, R.J.: Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol. Cell. Biol. 24(20), 9207–9220 (2004)

    Article  Google Scholar 

  48. Niewolik, D., Pannicke, U., Lu, H., Ma, Y., Wang, L.C., Kulesza, P., Zandi, E., Lieber, M.R., Schwarz, K.: DNA-PKcs dependence of Artemis endonucleolytic activity, differences between hairpins and 5′ or 3′ overhangs. J. Biol. Chem. 281(45), 33900–33909 (2006)

    Article  Google Scholar 

  49. Lee, J.H., Paull, T.T.: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721), 551–554 (2005)

    Article  ADS  Google Scholar 

  50. Gottlieb, T.M., Jackson, S.P.: The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72(1), 131–142 (1993)

    Article  Google Scholar 

  51. Lobrich, M., Jeggo, P.A.: Harmonising the response to DSBs: a new string in the ATM bow. DNA Repair (Amst) 4(7), 749–759 (2005)

    Article  Google Scholar 

  52. Milo, R., Jorgensen, P., Moran, U., Weber, G., Springer, M.: BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38(Database issue), D750–D753 (2010)

    Article  Google Scholar 

  53. Chang, A., Schomburg, I., Placzek, S., Jeske, L., Ulbrich, M., Xiao, M., Sensen, C.W., Schomburg, D.: BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res. 43(Database issue), D439–D446 (2015)

    Article  Google Scholar 

  54. Chen, L., Trujillo, K., Sung, P., Tomkinson, A.E.: Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J. Biol. Chem. 275(34), 26196–26205 (2000)

    Article  Google Scholar 

  55. Teraoka, H., Sawai, M., Tsukada, K.: DNA ligase from mouse Ehrlich ascites tumor cells. J. Biochem. 95(5), 1529–1532 (1984)

    Article  Google Scholar 

  56. Anderson, C.W., Carter, T.H.: The DNA-activated protein kinase—DNA-PK. Curr. Top. Microbiol. Immunol. 217, 91–111 (1996)

    Google Scholar 

  57. Bakkenist, C.J., Kastan, M.B.: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922), 499–506 (2003)

    Article  ADS  Google Scholar 

  58. Moshous, D., Callebaut, I., de Chasseval, R., Corneo, B., Cavazzana-Calvo, M., Le Deist, F., Tezcan, I., Sanal, O., Bertrand, Y., Philippe, N., Fischer, A., de Villartay, J.P.: Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105(2), 177–186 (2001)

    Article  Google Scholar 

  59. Mimori, T., Hardin, J.A., Steitz, J.A.: Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J. Biol. Chem. 261(5), 2274–2278 (1986)

    Google Scholar 

  60. Windhofer, F., Wu, W., Iliakis, G.: Low levels of DNA ligases III and IV sufficient for effective NHEJ. J. Cell. Physiol. 213(2), 475–483 (2007)

    Article  Google Scholar 

  61. Butch, A.W., Chun, H.H., Nahas, S.A., Gatti, R.A.: Immunoassay to measure ataxia-telangiectasia mutated protein in cellular lysates. Clin. Chem. 50(12), 2302–2308 (2004)

    Article  Google Scholar 

  62. Rogakou, E.P., Boon, C., Redon, C., Bonner, W.M.: Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146(5), 905–916 (1999)

    Article  Google Scholar 

  63. Ingalls, B.P., Sauro, H.M.: Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J. Theor. Biol. 222(1), 23–36 (2003)

    Article  MathSciNet  Google Scholar 

  64. Gately, D.P., Hittle, J.C., Chan, G.K., Yen, T.J.: Characterization of ATM expression, localization, and associated DNA-dependent protein kinase activity. Mol. Biol. Cell 9(9), 2361–2374 (1998)

    Article  Google Scholar 

  65. Jongmans, W., Vuillaume, M., Chrzanowska, K., Smeets, D., Sperling, K., Hall, J.: Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation. Mol. Cell. Biol. 17(9), 5016–5022 (1997)

    Article  Google Scholar 

  66. Shiloh, Y.: ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer 3(3), 155–168 (2003)

    Article  Google Scholar 

  67. Klokov, D., MacPhail, S.M., Banath, J.P., Byrne, J.P., Olive, P.L.: Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiother. Oncol. 80(2), 223–229 (2006)

    Article  Google Scholar 

  68. Ferguson, D.O., Sekiguchi, J.M., Chang, S., Frank, K.M., Gao, Y., DePinho, R.A., Alt, F.W.: The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Natl. Acad. Sci. U. S. A. 97(12), 6630–6633 (2000)

    Article  ADS  Google Scholar 

  69. Kasten, U., Plottner, N., Johansen, J., Overgaard, J., Dikomey, E.: Ku70/80 gene expression and DNA-dependent protein kinase (DNA-PK) activity do not correlate with double-strand break (DSB) repair capacity and cellular radiosensitivity in normal human fibroblasts. Br. J. Cancer 79(7–8), 1037–1041 (1999)

    Article  Google Scholar 

  70. Poinsignon, C., de Chasseval, R., Soubeyrand, S., Moshous, D., Fischer, A., Hache, R.J., de Villartay, J.P.: Phosphorylation of Artemis following irradiation-induced DNA damage. Eur. J. Immunol. 34(11), 3146–3155 (2004)

    Article  Google Scholar 

  71. Goodarzi, A.A., Yu, Y., Riballo, E., Douglas, P., Walker, S.A., Ye, R., Harer, C., Marchetti, C., Morrice, N., Jeggo, P.A., Lees-Miller, S.P.: DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J. 25(16), 3880–3889 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The Institute for Advanced Studies in Basic Sciences (IASBS) is acknowledged for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Rouhani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhani, M. Modeling the interplay between DNA-PK, Artemis, and ATM in non-homologous end-joining repair in G1 phase of the cell cycle. J Biol Phys 45, 127–146 (2019). https://doi.org/10.1007/s10867-018-9519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9519-2

Keywords

Navigation