Skip to main content

Advertisement

Log in

Comparative Molecular Field Analysis and Molecular Docking Studies on Quinolinone Derivatives Indicate Potential Hepatitis C Virus Inhibitors

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Presently, there are no effective vaccines and anti-virals for the prevention and treatment of Hepatitis C virus infections and hence there is an urgent need to develop potent HCV inhibitors. In this study, we have carried out molecular docking, molecular dynamics and 3D-QSAR on heteroaryl 3-(1,1-dioxo-2H-(1,2,4)-benzothiadizin-3-yl)-4-hydroxy-2(1H)-quinolinone series using NS5B protein. Total of 41 quinolinone derivatives is used for molecular modeling study. The binding conformation and hydrogen bond interaction of the docked complexes were analyzed to model the inhibitors. We identified the molecule XXXV that had a higher affinity with NS5B. The molecular dynamics study confirmed the stability of the compound XXXV-NS5B complex. The developed CoMFA descriptors parameters, which were calculated using a test set of 13 compounds, were statistically significant. Our results will provide useful insights and lead to design potent anti-Hepatitis C virus molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CoMFA:

Comparative Molecular Field Analysis

HCV:

Hepatitis C virus

NS5B:

Nonstructural protein 5B

ONC:

Optimal Number of Components

PDB:

Protein Data Bank

PLS:

Partial Least Square

QSAR:

Quantitative Structure Activity Relationship

SEE:

Standard Error of Estimate

References

  1. Budkowska., A. (2009). Mechanism of cell infection with hepatitis C virus (HCV)-a new paradigm in virus-cell interaction. Polish Journal of Microbiology, 58, 93–98.

    CAS  PubMed  Google Scholar 

  2. Uprichard, S. L. (2010). Hepatitis C virus experimental model systems and antiviral drug research. Virologica Sinica, 25, 227–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chevaliez, S., & Pawlotsky, J. M. (2006). HCV Genome and Life Cycle. In S. L. Tan (Ed.), Hepatitis C Viruses: Genomes and Molecular Biology (pp. 5–47). Norfolk: Horizon Scientific Press.

    Google Scholar 

  4. Luban, N. L., Colvin, C. A., Mohan, P., & Alter, H. J. (2007). The epidemiology of transfusion-associated hepatitis C in a children’s hospital. Transfusion, 47, 615–620.

    Article  PubMed  Google Scholar 

  5. Nogueira, C. A., Edelman, D. C., Nogueira, C. M., Nogueira, S. A., Coelho, H. S., & Abrahao, L. J., et al. (2002). Hepatitis C virus transfusion-transmitted infection in Brazilian cardiac surgery patients. Clinical Laboratory, 48, 529–533.

    PubMed  Google Scholar 

  6. Beaulieu, P. L., Bos, M., Bousquet, Y., Fazal, G., Gauthier, J., & Gillard, J., et al. (2004). Non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase: discovery and preliminary SAR of benzimidazole derivatives. Bioorganic & Medicinal Chemistry Letters, 14, 119–124.

    Article  CAS  Google Scholar 

  7. Nichols, D. B., Fournet, G., Gurukumar, K. R., Basu, A., Lee, J. C., & Sakamoto, N., et al. (2012). Inhibition of hepatitis C virus NS5B polymerase by S-trityl-L-cysteine derivatives. European Journal of Medicinal Chemistry, 49, 191–199.

    Article  CAS  PubMed  Google Scholar 

  8. Ding, Q., von Schaewen, M., & Ploss, A. (2014). The impact of hepatitis C virus entry on viral tropism. Cell Host & Microbe, 16, 562–568.

    Article  CAS  Google Scholar 

  9. Bartenschlager, R., Frese, M., & Pietschmann, T. (2004). Novel insights into hepatitis C virus replication and persistence. Advances in Virus Research, 63, 71–180.

    Article  CAS  PubMed  Google Scholar 

  10. Behrens, S. E., Tomei, L., & De Francesco, R. (1996). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. The EMBO Journal, 15, 12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hugle, T., & Cerny, A. (2003). Current therapy and new molecular approaches to antiviral treatment and prevention of hepatitis C. Reviews in Medical Virology, 13, 361–371.

    Article  CAS  PubMed  Google Scholar 

  12. Kang, I. J., Wang, L. W., Hsu, S. J., Lee, C. C., Lee, Y. C., & Wu, Y. S., et al. (2009). Design and efficient synthesis of novel arylthiourea derivatives as potent hepatitis C virus inhibitors. Bioorganic & Medicinal Chemistry Letters, 19, 6063–6068.

    Article  CAS  Google Scholar 

  13. Khatri, N., Lather, V., & Madan, A. K. (2015). Diverse classification models for anti-hepatitis C virus activity of thiourea derivatives. Chemometrics and Intelligent Laboratory Systems, 140, 13–21.

    Article  CAS  Google Scholar 

  14. Lokwani, D. K., Mokale, S. N., & Shinde, D. B. (2014). 3D QSAR studies based in silico screening of 4,5,6-triphenyl-1,2,3,4-tetrahydropyrimidine analogs for anti-inflammatory activity. European Journal of Medicinal Chemistry, 73, 233–242.

    Article  CAS  PubMed  Google Scholar 

  15. Lavanchy, D. (2012). Viral hepatitis: global goals for vaccination. Journal of Clinical Virology, 55, 296–302.

    Article  PubMed  Google Scholar 

  16. Aronsohn, A., & Reau, N. (2009). Long-term outcomes after treatment with interferon and ribavirin in HCV patients. Journal of Clinical Gastroenterology, 43, 661–671.

    Article  CAS  PubMed  Google Scholar 

  17. Feuerstadt, P., Bunim, A. L., Garcia, H., Karlitz, J. J., Massoumi, H., & Thosani, A. J., et al. (2010). Effectiveness of hepatitis C treatment with pegylated interferon and ribavirin in urban minority patients. Hepatology, 51, 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  18. Palumbo, E. (2011). Pegylated interferon and ribavirin treatment for hepatitis C virus infection. Therapeutic Advances in Chronic Disease, 2, 39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, J., Zhang, L., Guo, H., Wang, S., Wang, L., Ma, L., & Lu, X. (2014). Activity prediction of hepatitis C virus NS5B polymerase inhibitors of pyridazinone derivatives. Chemometrics and Intelligent Laboratory Systems, 134, 100–109.

    Article  CAS  Google Scholar 

  20. Lechmann, M., & Liang, T. J. (2000). Vaccine development for hepatitis C. Seminars in Liver Disease, 20, 211–226.

    Article  CAS  PubMed  Google Scholar 

  21. Beaulieu, P. L. (2009). Recent advances in the development of NS5B polymerase inhibitors for the treatment of hepatitis C virus infection. Expert Opinion on Therapeutic Patents, 19, 145–164.

    Article  CAS  PubMed  Google Scholar 

  22. Delang, L., Froeyen, M., Herdewijn, P., & Neyts, J. (2012). Identification of a novel resistance mutation for benzimidazole inhibitors of the HCV RNA-dependent RNA polymerase. Antiviral Research, 93, 30–38.

    Article  CAS  PubMed  Google Scholar 

  23. Hirashima, S., Suzuki, T., Ishida, T., Noji, S., Yata, S., & Ando, I., et al. (2006). Benzimidazole derivatives bearing substituted biphenyls as hepatitis C virus NS5B RNA-dependent RNA polymerase inhibitors: structure-activity relationship studies and identification of a potent and highly selective inhibitor JTK-109. Journal of Medicinal Chemistry, 49, 4721–4736.

    Article  CAS  PubMed  Google Scholar 

  24. Tomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., & Pacini, L., et al. (2003). Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. Journal of Virology, 77, 13225–13231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gopalsamy, A., Chopra, R., Lim, K., Ciszewski, G., Shi, M., & Curran, K. J., et al. (2006). Discovery of proline sulfonamides as potent and selective hepatitis C virus NS5b polymerase inhibitors. Evidence for a new NS5b polymerase binding site. Journal of Medicinal Chemistry, 49, 3052–3055.

    Article  CAS  PubMed  Google Scholar 

  26. Rong, F., Chow, S., Yan, S., Larson, G., Hong, Z., & Wu, J. (2007). Structure-activity relationship (SAR) studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors. Bioorganic & Medicinal Chemistry Letters, 17, 1663–1666.

    Article  CAS  Google Scholar 

  27. Fitch, D. M., Evans, K. A., Chai, D., & Duffy, K. J. (2005). A highly efficient, asymmetric synthesis of benzothiadiazine-substituted tetramic acids: potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Organic Letters, 7, 5521–5524.

    Article  CAS  PubMed  Google Scholar 

  28. Harper, S., Avolio, S., Pacini, B., Di Filippo, M., Altamura, S., & Tomei, L., et al. (2005). Potent inhibitors of subgenomic hepatitis C virus RNA replication through optimization of indole-N-acetamide allosteric inhibitors of the viral NS5B polymerase. Journal of Medicinal Chemistry, 48, 4547–4557.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, K. M., Anbarasu, A., & Ramaiah, S. (2014). Molecular docking and molecular dynamics studies on β-lactamases and penicillin binding proteins. Molecular BioSystems, 10, 891–900.

    Article  CAS  PubMed  Google Scholar 

  30. Parimelzaghan, A., Anbarasu, A., & Ramaiah, S. (2016). Gene network analysis of metallo beta lactamase family proteins indicates the role of gene partners in antibiotic resistance and reveals important drug targets. Journal of Cellular Biochemistry, 117, 1330–1339.

    Article  CAS  PubMed  Google Scholar 

  31. Tedesco, R., Chai, D., Darcy, M. G., Dhanak, D., Fitch, D. M., & Gates, A., et al. (2009). Synthesis and biological activity of heteroaryl 3-(1,1-dioxo-2H-(1,2,4)-benzothiadizin-3-yl)-4-hydroxy-2(1H)-quinolinone derivatives as hepatitis C virus NS5B polymerase inhibitors. Bioorganic & Medicinal Chemistry Letters, 19, 4354–4358.

    Article  CAS  Google Scholar 

  32. Tedesco, R., Shaw, A. N., Bambal, R., Chai, D., Concha, N. O., Darcy, M. G., Dhanak, D., Fitch, D. M., Gates, A., Gerhardt, W. G., Halegoua, D. L., Han, C., Hofmann, G. A., Johnston, V. K., Kaura, A. C., Liu, N., Keenan, R. M., Lin-Goerke, J., Sarisky, R. T., Wiggall, K. J., Zimmerman, M. N., & Duffy, K. J. (2006). 3-(1,1-dioxo-2H-(1,2,4)-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones, potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Journal of Medicinal Chemistry, 49, 971–983.

    Article  CAS  PubMed  Google Scholar 

  33. Li, Z., Wan, H., Shi, Y., & Ouyang, P. (2004). Personal experience with four kinds of chemical structure drawing software: review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. Journal of Chemical Information and Modeling, 44, 1886–1890.

    CAS  Google Scholar 

  34. Stammers, T. A., Coulombe, R., Duplessis, M., Fazal, G., Gagnon, A., & Garneau, M., et al. (2013). Anthranilic acid-based Thumb Pocket 2 HCV NS5B polymerase inhibitors with sub-micromolar potency in the cell-based replicon assay. Bioorganic & Medicinal Chemistry Letters, 23, 6879–6885.

    Article  CAS  Google Scholar 

  35. Jain, A. N. (2003). Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry, 46, 499–511.

    Article  CAS  PubMed  Google Scholar 

  36. Suganya, S., Nandagopal, B., & Anbarasu, A. (2017). Natural inhibitors of HMG-CoA reductase-an in-silico approach through molecular docking and simulation studies. Journal of Cellular Biochemistry, 118, 52–57.

    Article  CAS  PubMed  Google Scholar 

  37. Wei, L., Chintala, S., Ciamporcero, E., Ramakrishnan, S., Elbanna, M., & Wang, J., et al. (2016). Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts. Oncotarget, 7, 76374–76389.

    PubMed  PubMed Central  Google Scholar 

  38. Malathi, K., & Ramaiah, S. (2016). Molecular Docking and molecular dynamics studies to identify potential OXA-10 Extended Spectrum β-Lactamase non-hydrolysing inhibitors for Pseudomonas aeruginosa. Cell Biochemistry and Biophysics, 74, 141–155.

    Article  CAS  PubMed  Google Scholar 

  39. Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron, 36, 3219–3228.

    Article  CAS  Google Scholar 

  40. Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, III, T. E., & DeBolt, S., et al. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91, 1–41.

    Article  CAS  Google Scholar 

  41. Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. The Computer Journal, 6, 163–168.

    Article  Google Scholar 

  42. Wu, X., Wu, S., & Chen, W. H. (2012). Molecular docking and 3D-QSAR study on 4-(1H-indazol-4-yl) phenylamino and aminopyrazolopyridine urea derivatives as kinase insert domain receptor (KDR) inhibitors. Journal of Molecular Modeling, 18, 1207–1218.

    Article  CAS  PubMed  Google Scholar 

  43. Malathi, K., Anbarasu, A., & Ramaiah, S. (2017). Exploring the resistance mechanism of imipenem in carbapenem hydrolysing class D beta-lactamases OXA-143 and its variant OXA-231 (D224A) expressing Acinetobacter baumannii: An in-silico approach. Computational Biology and Chemistry, 67, 1–8.

    Article  CAS  PubMed  Google Scholar 

  44. Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  CAS  PubMed  Google Scholar 

  45. Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656–1676.

    Article  CAS  PubMed  Google Scholar 

  46. Schuttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60, 1355–1363.

    Article  CAS  Google Scholar 

  47. Berendsen, H. J. C., Postama, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullmann (Ed.), Intermolecular Forces (pp. 331–342). Dordrecht: D. Reidel Publishing Company.

    Chapter  Google Scholar 

  48. Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.

    Article  CAS  Google Scholar 

  49. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98, 10089–10092.

    Article  CAS  Google Scholar 

  50. Turner, P. J. (2005). XMGRACE, Version 5.1.19. Beaverton, ORE, USA: Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.

    Google Scholar 

  51. Thillainayagam, M., Pandian, L., Murugan, K. K., Vijayaparthasarathi, V., Sundaramoorthy, S., Anbarasu, A., & Ramaiah, S. (2015). In silico analysis reveals the anti-malarial potential of quinolinyl chalcone derivatives. Journal of Biomolecular Structure and Dynamics, 33, 961–977.

    Article  CAS  PubMed  Google Scholar 

  52. Thillainayagam, M., Anbarasu, A., & Ramaiah, S. (2016). Comparative molecular field analysis and molecular docking studies on novel aryl chalcone derivatives against an important drug target cysteine protease in Plasmodium falciparum. Journal of Theoretical Biology, 403, 110–128.

    Article  CAS  PubMed  Google Scholar 

  53. Paul, D., Hoppe, S., Saher, G., Krijnse-Locker, J., & Bartenschlager, R. (2013). Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. Journal of Virology, 87, 10612–10627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AA and SR thank Indian Council of Medical Research (ICMR), Government of India Agency for the Research Grant (IRIS ID: 2014-0099) and also thank the management of VIT for the facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Anbarasu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malathi, K., Ramaiah, S. & Anbarasu, A. Comparative Molecular Field Analysis and Molecular Docking Studies on Quinolinone Derivatives Indicate Potential Hepatitis C Virus Inhibitors. Cell Biochem Biophys 77, 139–156 (2019). https://doi.org/10.1007/s12013-019-00867-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-019-00867-4

Keywords

Navigation