Skip to main content

Advertisement

Log in

Targeting Hyaluronan Interactions for Glioblastoma Stem Cell Therapy

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

Even with rigorous treatments, glioblastoma multiforme (GBM) has an abysmal median survival rate, greatly due to the drug-resistant glioblastoma stem cell (GSC) population. GSCs are known to remodel their microenvironment, but the precise role of extracellular matrix components hyaluronic acid (HA) and hyaluronidases (HAases) on the GSC population is still largely unknown. Our objective was to determine how HAase can sensitize GSCs to chemotherapy drugs by disrupting the HA-CD44 signaling. GBM cell line U87-MG and patient-derived D456 cells were grown in GSC-enriching media and treated with HA or HAase. Expressions of GSC markers, HA-related genes, and drug resistance genes were measured via flow cytometry, confocal microscopy, and qRT-PCR. Proliferation after combined HAase and temozolomide (TMZ) treatment was measured via WST-8. HA supplementation promoted the expression of GSC markers and CD44 in GBM cells cultured in serum-free media. Conversely, HAase addition inhibited GSC gene expression while promoting CD44 expression. Finally, HAase sensitized GBM cells to TMZ. We propose a combined treatment of HAase and chemotherapy drugs by disrupting the stemness-promoting HA to target GSCs. This combination therapy shows promise even when temozolomide treatment alone causes resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722. https://doi.org/10.1056/NEJMoa1308345

    Article  CAS  PubMed  Google Scholar 

  2. Tamura K, Aoyagi M, Wakimoto H, Ando N, Nariai T, Yamamoto M, Ohno K (2010) Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg 113:310–318. https://doi.org/10.3171/2010.2.jns091607

    Article  PubMed  Google Scholar 

  3. Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, Siemianowicz K, Likus W, Wiechec E, Toyota BD, Hoshyar R, Seyfoori A, Sepehri Z, Ande SR, Khadem F, Akbari M, Gorman AM, Samali A, Klonisch T, Ghavami S (2018) Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 184:13–41. https://doi.org/10.1016/j.pharmthera.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  4. Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52:167–182. https://doi.org/10.1002/mc.21844

    Article  CAS  PubMed  Google Scholar 

  5. Herrera-Perez M, Voytik-Harbin SL, Rickus JL (2015) Extracellular matrix properties regulate the migratory response of glioblastoma stem cells in three-dimensional culture. Tissue Eng Part A 21:2572–2582. https://doi.org/10.1089/ten.TEA.2014.0504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lv D, Yu SC, Ping YF, Wu H, Zhao X, Zhang H, Cui Y, Chen B, Zhang X, Dai J, Bian XW, Yao XH (2016) A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget 7:56904–56914. https://doi.org/10.18632/oncotarget.10885

    Article  PubMed  PubMed Central  Google Scholar 

  7. Akiyama Y, Jung S, Salhia B, Lee S, Hubbard S, Taylor M, Mainprize T, Akaishi K, van Furth W, Rutka JT (2001) Hyaluronate receptors mediating glioma cell migration and proliferation. J Neuro-Oncol 53:115–127. https://doi.org/10.1023/a:1012297132047

    Article  CAS  Google Scholar 

  8. Toole BP (2009) Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res 15:7462–7468. https://doi.org/10.1158/1078-0432.CCR-09-0479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karbownik MS, Nowak JZ (2013) Hyaluronan: towards novel anti-cancer therapeutics. Pharmacol Rep 65:1056–1074

    Article  CAS  PubMed  Google Scholar 

  10. Stern R (2008) Association between cancer and “acid mucopolysaccharides”: an old concept comes of age, finally. Semin Cancer Biol 18:238–243. https://doi.org/10.1016/j.semcancer.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  11. Shepard HM (2015) Breaching the castle walls: Hyaluronan depletion as a therapeutic approach to cancer therapy. Front Oncol 5:192. https://doi.org/10.3389/fonc.2015.00192

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thompson CB, Shepard HM, O'Connor PM, Kadhim S, Jiang P, Osgood RJ, Bookbinder LH, Li X, Sugarman BJ, Connor RJ, Nadjsombati S, Frost GI (2010) Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther 9:3052–3064. https://doi.org/10.1158/1535-7163.MCT-10-0470

    Article  CAS  PubMed  Google Scholar 

  13. Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R (2010) Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther 18:1275–1283. https://doi.org/10.1038/mt.2010.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong KM, Horton KJ, Coveler AL, Hingorani SR, Harris WP (2017) Targeting the tumor stroma: the biology and clinical development of Pegylated recombinant human hyaluronidase (PEGPH20). Curr Oncol Rep 19:47. https://doi.org/10.1007/s11912-017-0608-3

    Article  CAS  PubMed  Google Scholar 

  15. Celiku O, Johnson S, Zhao S, Camphausen K, Shankavaram U (2014) Visualizing molecular profiles of glioblastoma with GBM-BioDP. PLoS One 9:e101239. https://doi.org/10.1371/journal.pone.0101239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O'Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas Research N (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedman GK, Langford CP, Coleman JM, Cassady KA, Parker JN, Markert JM, Yancey Gillespie G (2009) Engineered herpes simplex viruses efficiently infect and kill CD133+ human glioma xenograft cells that express CD111. J Neuro-Oncol 95:199–209. https://doi.org/10.1007/s11060-009-9926-0

    Article  CAS  Google Scholar 

  18. Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347:70–78. https://doi.org/10.1016/j.jim.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  19. Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273. https://doi.org/10.1038/sj.onc.1207946

    Article  CAS  PubMed  Google Scholar 

  20. Adamski V, Hempelmann A, Flüh C, Lucius R, Synowitz M, Hattermann K, Held-Feindt J (2017) Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by temozolomide and AT101 treatment. Oncotarget 8:108064–108078. https://doi.org/10.18632/oncotarget.22514

    Article  PubMed  PubMed Central  Google Scholar 

  21. Atkinson GP, Nozell SE, Benveniste ET (2010) NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother 10:575–586. https://doi.org/10.1586/ern.10.21

    Article  CAS  PubMed  Google Scholar 

  22. Auffinger B, Tobias AL, Han Y, Lee G, Guo D, Dey M, Lesniak MS, Ahmed AU (2014) Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 21:1119–1131. https://doi.org/10.1038/cdd.2014.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stern R, Jedrzejas MJ (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 106:818–839. https://doi.org/10.1021/cr050247k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kohno N, Ohnuma T, Truog P (1994) Effects of hyaluronidase on doxorubicin penetration into squamous carcinoma multicellular tumor spheroids and its cell lethality. J Cancer Res Clin Oncol 120:293–297

    Article  CAS  PubMed  Google Scholar 

  25. Kerbel RS, St Croix B, Florenes VA, Rak J (1996) Induction and reversal of cell adhesion-dependent multicellular drug resistance in solid breast tumors. Hum Cell 9:257–264

    CAS  PubMed  Google Scholar 

  26. Baumgartner G, Gomar-Höss C, Sakr L, Ulsperger E, Wogritsch C (1998) The impact of extracellular matrix on the chemoresistance of solid tumors--experimental and clinical results of hyaluronidase as additive to cytostatic chemotherapy. Cancer Lett 131:85–99

    Article  CAS  PubMed  Google Scholar 

  27. Whatcott CJ, Han H, Posner RG, Hostetter G, Von Hoff DD (2011) Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look. Cancer Discov 1:291–296. https://doi.org/10.1158/2159-8290.CD-11-0136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. https://doi.org/10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallego O (2015) Nonsurgical treatment of recurrent glioblastoma. Curr Oncol 22:e273–e281. https://doi.org/10.3747/co.22.2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang HH, Liao CC, Chow NH, Huang LL, Chuang JI, Wei KC, Shin JW (2017) Whether CD44 is an applicable marker for glioma stem cells. Am J Transl Res 9:4785–4806

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Harada H, Takahashi M (2007) CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J Biol Chem 282:5597–5607. https://doi.org/10.1074/jbc.M608358200

    Article  CAS  PubMed  Google Scholar 

  32. Duterme C, Mertens-Strijthagen J, Tammi M, Flamion B (2009) Two novel functions of hyaluronidase-2 (Hyal2) are formation of the glycocalyx and control of CD44-ERM interactions. J Biol Chem 284:33495–33508. https://doi.org/10.1074/jbc.M109.044362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sironen RK, Tammi M, Tammi R, Auvinen PK, Anttila M, Kosma VM (2011) Hyaluronan in human malignancies. Exp Cell Res 317:383–391. https://doi.org/10.1016/j.yexcr.2010.11.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. G. Yancey Gillespie (University of Alabama at Birmingham) for providing the D456 patient-derived xenograft GBM line. The authors would like to further acknowledge financial support from the National Science Foundation (CBET 1604677 to Y.K. and S.R.), the University of Alabama Randall Research Scholars Program (J.S.H.), and by the Alabama Experimental Program to Stimulate Competitive Research (S.P.). S.D.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghyun Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartheimer, J.S., Park, S., Rao, S.S. et al. Targeting Hyaluronan Interactions for Glioblastoma Stem Cell Therapy. Cancer Microenvironment 12, 47–56 (2019). https://doi.org/10.1007/s12307-019-00224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-019-00224-2

Keywords

Navigation