1932

Abstract

Polymeric nanoparticles have tremendous potential to improve the efficacy of therapeutic cancer treatments by facilitating targeted delivery to a desired site. The physical and chemical properties of polymers can be tuned to accomplish delivery across the multiple biological barriers required to reach diverse subsets of cells. The use of biodegradable polymers as nanocarriers is especially attractive, as these materials can be designed to break down in physiological conditions and engineered to exhibit triggered functionality when at a particular location or activated by an external source. We present how biodegradable polymers can be engineered as drug delivery systems to target the tumor microenvironment in multiple ways. These nanomedicines can target cancer cells directly, the blood vessels that supply the nutrients and oxygen that support tumor growth, and immune cells to promote anticancer immunotherapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084055
2018-06-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/9/1/annurev-chembioeng-060817-084055.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084055&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Petros RA, DeSimone JM 2010. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9:615–27
    [Google Scholar]
  2. 2.  Alexis F, Pridgen E, Molnar LK, Farokhzad OC 2008. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5:505–15
    [Google Scholar]
  3. 3.  Ekin A, Karatas OF, Culha M, Ozen M 2014. Designing a gold nanoparticle-based nanocarrier for microRNA transfection into the prostate and breast cancer cells. J. Gene Med. 16:331–35
    [Google Scholar]
  4. 4.  Madhusudhan A, Reddy GB, Venkatesham M, Veerabhadram G, Kumar DA et al. 2014. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int. J. Mol. Sci. 15:8216–34
    [Google Scholar]
  5. 5.  Zhou J, Zhang J, Gao W 2014. Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, beta-glucosidase-conjugated iron oxide nanoparticles. Int. J. Nanomed. 9:2905–17
    [Google Scholar]
  6. 6.  Zhu J, Zheng L, Wen S, Tang Y, Shen M et al. 2014. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 35:7635–46
    [Google Scholar]
  7. 7.  Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE 2015. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine 10:993–1018
    [Google Scholar]
  8. 8.  Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G et al. 2013. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31:638–46
    [Google Scholar]
  9. 9.  Xing M, Yan F, Yu S, Shen P 2015. Efficacy and cardiotoxicity of liposomal doxorubicin-based chemotherapy in advanced breast cancer: a meta-analysis of ten randomized controlled trials. PLOS ONE 10:e0133569
    [Google Scholar]
  10. 10.  O'Brien MER, Wigler N, Inbar M, Rosso R, Grischke E et al. 2004. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. 15:440–49
    [Google Scholar]
  11. 11.  Muggia FM, Hainsworth JD, Jeffers S, Miller P, Groshen S et al. 1997. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J. Clin. Oncol. 15:987–93
    [Google Scholar]
  12. 12.  Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R 1994. Biodegradable long-circulating polymeric nanospheres. Science 263:1600–3
    [Google Scholar]
  13. 13.  Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR et al. 1997. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 43:197–212
    [Google Scholar]
  14. 14.  Mitra S, Gaur U, Ghosh PC, Maitra AN 2001. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release 74:317–23
    [Google Scholar]
  15. 15.  Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K 2007. Covalent attachment of apolipoprotein AI and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J. Control. Release 118:54–58
    [Google Scholar]
  16. 16.  Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME 2007. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. PNAS 104:15549–54
    [Google Scholar]
  17. 17.  Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A 2000. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. 6:1949–57
    [Google Scholar]
  18. 18.  Kim J-H, Kim Y-S, Park K, Kang E, Lee S et al. 2008. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials 29:1920–30
    [Google Scholar]
  19. 19.  Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M et al. 2009. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology 20:455104
    [Google Scholar]
  20. 20.  Cho N-H, Cheong T-C, Min JH, Wu JH, Lee SJ et al. 2011. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 6:675–82
    [Google Scholar]
  21. 21.  Prasad S, Cody V, Saucier-Sawyer JK, Saltzman WM, Sasaki CT et al. 2011. Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell–based antitumor immunotherapy. Nanomed. Nanotechnol. Biol. Med. 7:1–10
    [Google Scholar]
  22. 22.  McCall RL, Sirianni RW 2013. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J. Vis. Exp. 82:e51015
    [Google Scholar]
  23. 23.  Wang Y, Gao S, Wen-Hui Y, Yoon HS, Yi-Yan Y 2006. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat. Mater. 5:791
    [Google Scholar]
  24. 24.  Chan JM, Zhang L, Yuet KP, Liao G, Rhee J-W et al. 2009. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 30:1627–34
    [Google Scholar]
  25. 25.  Dang JM, Leong KW 2006. Natural polymers for gene delivery and tissue engineering. Adv. Drug Deliv. Rev. 58:487–99
    [Google Scholar]
  26. 26.  Nair LS, Laurencin CT 2007. Biodegradable polymers as biomaterials. Prog. Polymer Sci. 32:762–98
    [Google Scholar]
  27. 27.  Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A 2013. Chitosan nanoparticles: preparation, size evolution and stability. Int. J. Pharm. 455:219–28
    [Google Scholar]
  28. 28.  Hong S-C, Yoo S-Y, Kim H, Lee J 2017. Chitosan-based multifunctional platforms for local delivery of therapeutics. Mar. Drugs 15:60
    [Google Scholar]
  29. 29.  Carrillo C, Suñé JM, Pérez-Lozano P, García-Montoya E, Sarrate R et al. 2014. Chitosan nanoparticles as non-viral gene delivery systems: determination of loading efficiency. Biomed. Pharmacother. 68:775–83
    [Google Scholar]
  30. 30.  Luo Y, Teng Z, Li Y, Wang Q 2015. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym. 122:221–29
    [Google Scholar]
  31. 31.  Kean T, Thanou M 2010. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 62:3–11
    [Google Scholar]
  32. 32.  Fonte P, Araújo F, Silva C, Pereira C, Reis S et al. 2015. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol. Adv. 33:1342–54
    [Google Scholar]
  33. 33.  Breitenbach BB, Schmid I, Wich PR 2017. Amphiphilic polysaccharide block copolymers for pH-responsive micellar nanoparticles. Biomacromolecules 18:2839–48
    [Google Scholar]
  34. 34.  Banerjee A, Bandopadhyay R 2016. Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int. J. Biol. Macromol. 87:295–301
    [Google Scholar]
  35. 35.  Hudson D, Margaritis A 2014. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol. 34:161–79
    [Google Scholar]
  36. 36.  Jana S, Sen KK, Gandhi A 2016. Alginate based nanocarriers for drug delivery applications. Curr. Pharm. Des. 22:3399–410
    [Google Scholar]
  37. 37.  Jain D, Bar-Shalom D 2014. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm. 40:1576–84
    [Google Scholar]
  38. 38.  Lee SJ, Yhee JY, Kim SH, Kwon IC, Kim K 2013. Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice. J. Control. Release 172:358–66
    [Google Scholar]
  39. 39.  Singh A, Xu J, Mattheolabakis G, Amiji M 2016. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. Nanomedicine 12:589–600
    [Google Scholar]
  40. 40.  Santoro M, Tatara AM, Mikos AG 2014. Gelatin carriers for drug and cell delivery in tissue engineering. J. Control. Release 190:210–18
    [Google Scholar]
  41. 41.  Yamagata M, Kawano T, Shiba K, Mori T, Katayama Y, Niidome T 2007. Structural advantage of dendritic poly(l-lysine) for gene delivery into cells. Bioorg. Med. Chem. 15:526–32
    [Google Scholar]
  42. 42.  Acharya S, Sahoo SK 2011. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev. 63:170–83
    [Google Scholar]
  43. 43.  Chen CK, Law WC, Aalinkeel R, Nair B, Kopwitthaya A et al. 2012. Well-defined degradable cationic polylactide as nanocarrier for the delivery of siRNA to silence angiogenesis in prostate cancer. Adv. Healthc. Mater. 1:751–61
    [Google Scholar]
  44. 44.  Hasan W, Chu K, Gullapalli A, Dunn SS, Enlow EM et al. 2012. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett 12:287–92
    [Google Scholar]
  45. 45.  Grossen P, Witzigmann D, Sieber S, Huwyler J 2017. PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J. Control. Release 260:46–60
    [Google Scholar]
  46. 46.  Palama IE, Cortese B, D'Amone S, Gigli G 2015. mRNA delivery using non-viral PCL nanoparticles. Biomater. Sci. 3:144–51
    [Google Scholar]
  47. 47.  Ulery BD, Nair LS, Laurencin CT 2011. Biomedical applications of biodegradable polymers. J. Polymer Sci. B Polymer Phys. 49:832–64
    [Google Scholar]
  48. 48.  Loverde SM, Klein ML, Discher DE 2012. Nanoparticle shape improves delivery: rational coarse grain molecular dynamics (rCG-MD) of taxol in worm-like PEG-PCL micelles. Adv. Mater. 24:3823–30
    [Google Scholar]
  49. 49.  Tu Y, Peng F, André AAM, Men Y, Srinivas M, Wilson DA 2017. Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano 11:1957–63
    [Google Scholar]
  50. 50.  Davis ME, Pun SH, Bellocq NC, Reineke TM, Popielarski SR et al. 2004. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr. Med. Chem. 11:179–97
    [Google Scholar]
  51. 51.  Gonzalez H, Hwang SJ, Davis ME 1999. New class of polymers for the delivery of macromolecular therapeutics. Bioconjug. Chem. 10:1068–74
    [Google Scholar]
  52. 52.  Tzeng SY, Green JJ 2013. Subtle changes to polymer structure and degradation mechanism enable highly effective nanoparticles for siRNA and DNA delivery to human brain cancer. Adv. Healthc. Mater. 2:468–80
    [Google Scholar]
  53. 53.  Sunshine JC, Akanda MI, Li D, Kozielski KL, Green JJ 2011. Effects of base polymer hydrophobicity and end-group modification on polymeric gene delivery. Biomacromolecules 12:3592–600
    [Google Scholar]
  54. 54.  Sunshine J, Green JJ, Mahon KP, Yang F, Eltoukhy AA et al. 2009. Small-molecule end-groups of linear polymer determine cell-type gene-delivery efficacy. Adv. Mater. 21:4947–51
    [Google Scholar]
  55. 55.  Green JJ, Langer R, Anderson DG 2008. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41:749–59
    [Google Scholar]
  56. 56.  Guerrero-Cázares H, Tzeng SY, Young NP, Abutaleb AO, Quiñones-Hinojosa A, Green JJ 2014. Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human glioblastoma in vitro and in vivo. . ACS Nano 8:5141–53
    [Google Scholar]
  57. 57.  Kozielski KL, Tzeng SY, De Mendoza BAH, Green JJ 2014. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano 8:3232–41
    [Google Scholar]
  58. 58.  Lynn DM, Langer R 2000. Degradable poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 122:10761–68
    [Google Scholar]
  59. 59.  Sunshine JC, Peng DY, Green JJ 2012. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties. Mol. Pharm. 9:3375–83
    [Google Scholar]
  60. 60.  Zhang Y, Ma L, Deng X, Cheng J 2012. Trigger-responsive chain-shattering polymers. Polymer Chem 2:224–28
    [Google Scholar]
  61. 61.  Cai K, Yen J, Yin Q, Liu Y, Song Z et al. 2015. Redox-responsive self-assembled chain-shattering polymeric therapeutics. Biomater. Sci. 3:1061–65
    [Google Scholar]
  62. 62.  Zhang Y, Yin Q, Yin L, Ma L, Tang L, Cheng J 2013. Chain-shattering polymeric therapeutics with on-demand drug-release capability. Angew. Chem. Int. Ed. 52:6435–39
    [Google Scholar]
  63. 63.  Yan Y, Liu L, Xiong H, Miller JB, Zhou K et al. 2016. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. PNAS 113:E5702–10
    [Google Scholar]
  64. 64.  Yan Y, Zhou K, Xiong H, Miller JB, Motea EA et al. 2017. Aerosol delivery of stabilized polyester-siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials 118:84–93
    [Google Scholar]
  65. 65.  Shen Y, Zhan Y, Tang J, Xu P, Johnson PA et al. 2008. Multifunctioning pH‐responsive nanoparticles from hierarchical self‐assembly of polymer brush for cancer drug delivery. AIChE J 54:2979–89
    [Google Scholar]
  66. 66.  She W, Luo K, Zhang C, Wang G, Geng Y et al. 2013. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy. Biomaterials 34:1613–23
    [Google Scholar]
  67. 67.  Wang Y-C, Wang F, Sun T-M, Wang J 2011. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Bioconjug. Chem. 22:1939–45
    [Google Scholar]
  68. 68.  Na K, Lee KH, Lee DH, Bae YH 2006. Biodegradable thermo-sensitive nanoparticles from poly (l-lactic acid)/poly (ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier. Eur. J. Pharm. Sci. 27:115–22
    [Google Scholar]
  69. 69.  Zhang L, Guo R, Yang M, Jiang X, Liu B 2007. Thermo and pH dual‐responsive nanoparticles for anti‐cancer drug delivery. Adv. Mater. 19:2988–92
    [Google Scholar]
  70. 70.  Kern HB, Srinivasan S, Convertine AJ, Hockenbery D, Press OW, Stayton PS 2017. Enzyme-cleavable polymeric micelles for the intracellular delivery of proapoptotic peptides. Mol. Pharm. 14:1450–59
    [Google Scholar]
  71. 71.  You J, Shao R, Wei X, Gupta S, Li C 2010. Near‐infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small 6:1022–31
    [Google Scholar]
  72. 72.  Fan N-C, Cheng F-Y, Ho J-A, Yeh C-S 2012. Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light‐responsive tumor‐targeting molecule. Angew. Chem. Int. Ed. 51:8806–10
    [Google Scholar]
  73. 73.  Cochran MC, Eisenbrey J, Ouma RO, Soulen M, Wheatley MA 2011. Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int. J. Pharm. 414:161–70
    [Google Scholar]
  74. 74.  Chowdhury SM, Wang TY, Bachawal S, Devulapally R, Choe JW et al. 2016. Ultrasound-guided therapeutic modulation of hepatocellular carcinoma using complementary microRNAs. J. Control. Release 238:272–80
    [Google Scholar]
  75. 75.  Pouponneau P, Leroux J-C, Soulez G, Gaboury L, Martel S 2011. Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32:3481–86
    [Google Scholar]
  76. 76.  Vogelstein B, Kinzler KW 2004. Cancer genes and the pathways they control. Nat. Med. 10:789–99
    [Google Scholar]
  77. 77.  Leung RKM, Whittaker PA 2005. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol. Ther. 107:222–39
    [Google Scholar]
  78. 78.  Whitehead KA, Langer R, Anderson DG 2009. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8:129–38
    [Google Scholar]
  79. 79.  Kanasty R, Dorkin JR, Vegas A, Anderson D 2013. Delivery materials for siRNA therapeutics. Nat. Mater. 12:967–77
    [Google Scholar]
  80. 80.  Oh YK, Park TG 2009. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 61:850–62
    [Google Scholar]
  81. 81.  Shen H, Sun T, Ferrari M 2012. Nanovector delivery of siRNA for cancer therapy. Cancer Gene Ther 19:367–73
    [Google Scholar]
  82. 82.  Aigner A 2007. Nonviral in vivo delivery of therapeutic small interfering RNAs. Curr. Opin. Mol. Ther. 9:345–52
    [Google Scholar]
  83. 83.  Sonawane ND, Szoka FC, Verkman AS 2003. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 278:44826–31
    [Google Scholar]
  84. 84.  Shim MS, Kwon YJ 2012. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliv. Rev. 64:1046–58
    [Google Scholar]
  85. 85.  Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ 2005. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 65:8984–92
    [Google Scholar]
  86. 86.  Bartlett DW, Davis ME 2007. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug. Chem. 18:456–68
    [Google Scholar]
  87. 87.  Mishra S, Heidel JD, Webster P, Davis ME 2006. Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J. Control. Release 116:179–91
    [Google Scholar]
  88. 88.  Benns JM, Choi JS, Mahato RI, Park JS, Kim SW 2000. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(l-histidine)-graft-poly(l-lysine) comb shaped polymer. Bioconj. Chem. 11:637–45
    [Google Scholar]
  89. 89.  Kumar M, Gupta D, Singh G, Sharma S, Bhatt M et al. 2014. Novel polymeric nanoparticles for intracellular delivery of peptide cargos: antitumor efficacy of the Bcl-2 conversion peptide NuBCP-9. Cancer Res 74:3271–81
    [Google Scholar]
  90. 90.  Berguig GY, Convertine AJ, Frayo S, Kern HB, Procko E et al. 2015. Intracellular delivery system for antibody–peptide drug conjugates. Mol. Ther. 23:907–17
    [Google Scholar]
  91. 91.  Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD 1995. Extracellular pH distribution in human tumors. Int. J. Hyperth. 11:211–16
    [Google Scholar]
  92. 92.  Chen XL, Liu LS, Jiang C 2016. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharm. Sin. B 6:261–67
    [Google Scholar]
  93. 93.  Tannock IF, Rotin D 1989. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–84
    [Google Scholar]
  94. 94.  Zhang C, An T, Wang D, Wan GY, Zhang MM et al. 2016. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J. Control. Release 226:193–204
    [Google Scholar]
  95. 95.  Shao J, Xie H, Huang H, Li Z, Sun Z et al. 2016. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7:12967
    [Google Scholar]
  96. 96.  Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C 2013. Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 525:191–99
    [Google Scholar]
  97. 97.  Wen PY, Kesari S 2008. Malignant gliomas in adults. N. Engl. J. Med. 359:492–507
    [Google Scholar]
  98. 98.  Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN 2007. Molecularly targeted therapy for malignant glioma. Cancer 110:13–24
    [Google Scholar]
  99. 99.  Zarogoulidis P, Darwiche K, Sakkas A, Yarmus L, Huang H et al. 2013. Suicide gene therapy for cancer—current strategies. J. Genet. Syndr. Gene Ther. 4:16849
    [Google Scholar]
  100. 100.  Mangraviti A, Tzeng SY, Kozielski KL, Wang Y, Jin YK et al. 2015. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. . ACS Nano 9:1236–49
    [Google Scholar]
  101. 101.  Matsumura Y, Maeda H 1986. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–92
    [Google Scholar]
  102. 102.  Maeda H 2010. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem. 21:797–802
    [Google Scholar]
  103. 103.  Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC 2008. Polymeric nanomedicine for cancer therapy. Prog. Polymer Sci. 33:113–37
    [Google Scholar]
  104. 104.  Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L et al. 1998. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. PNAS 95:4607–12
    [Google Scholar]
  105. 105.  Sudimack J, Lee RJ 2000. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41:147–62
    [Google Scholar]
  106. 106.  Hilgenbrink AR, Low PS 2005. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J. Pharm. Sci. 94:2135–46
    [Google Scholar]
  107. 107.  Bellocq NC, Pun SH, Jensen GS, Davis ME 2003. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconj. Chem. 14:1122–32
    [Google Scholar]
  108. 108.  Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A et al. 2010. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–70
    [Google Scholar]
  109. 109.  Jeong Y-I, Kim DH, Chung C-W, Yoo JJ, Choi KH et al. 2012. Self-assembled nanoparticles of hyaluronic acid/poly (dl-lactide-co-glycolide) block copolymer. Colloids Surf. B Biointerfaces 90:28–35
    [Google Scholar]
  110. 110.  Zou Y, Fang Y, Meng H, Meng F, Deng C et al. 2016. Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: a robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy. J. Control. Release 244:326–35
    [Google Scholar]
  111. 111.  Zou Y, Meng F, Deng C, Zhong Z 2016. Robust, tumor-homing and redox-sensitive polymersomal doxorubicin: A superior alternative to Doxil and Caelyx?. J. Control. Release 239:149–58
    [Google Scholar]
  112. 112.  Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR et al. 1999. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–98
    [Google Scholar]
  113. 113.  Ferrara N, Alitalo K 1999. Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5:1359–64
    [Google Scholar]
  114. 114.  Itoh Y, Nagase H 2002. Matrix metalloproteinases in cancer. Proteases Biol. Med. 38:21–36
    [Google Scholar]
  115. 115.  Folkman J 2006. Angiogenesis. Annu. Rev. Med. 57:1–18
    [Google Scholar]
  116. 116.  Semenza GL 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3:721–32
    [Google Scholar]
  117. 117.  Semenza GL 2002. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8:S62–S67
    [Google Scholar]
  118. 118.  Semenza GL 2012. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33:207–14
    [Google Scholar]
  119. 119.  Folkman J, Klagsbrun M 1987. Angiogenic factors. Science 235:442–47
    [Google Scholar]
  120. 120.  Wang JM, Deng XY, Gong WH, Su SB 1998. Chemokines and their role in tumor growth and metastasis. J. Immunol. Methods 220:1–17
    [Google Scholar]
  121. 121.  Sengupta S, Eavarone D, Capila I, Zhao GL, Watson N et al. 2005. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–72
    [Google Scholar]
  122. 122.  Lee E, Lee SJ, Koskimaki JE, Han Z, Pandey NB et al. 2014. Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Sci. Rep. 4:7139
    [Google Scholar]
  123. 123.  Yang Y 2015. Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Investig. 125:3335–37
    [Google Scholar]
  124. 124.  Makkouk A, Weiner GJ 2015. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res 75:5–10
    [Google Scholar]
  125. 125.  Hotaling NA, Tang L, Irvine DJ, Babensee JE 2015. Biomaterial strategies for immunomodulation. Annu. Rev. Biomed. Eng. 17:317–49
    [Google Scholar]
  126. 126.  Irvine DJ, Hanson MC, Rakhra K, Tokatlian T 2015. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115:11109–46
    [Google Scholar]
  127. 127.  Cheung AS, Mooney DJ 2015. Engineered materials for cancer immunotherapy. Nano Today 10:511–31
    [Google Scholar]
  128. 128.  Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC et al. 2012. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366:2443–54
    [Google Scholar]
  129. 129.  Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM et al. 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371:2189–99
    [Google Scholar]
  130. 130.  Kosmides AK, Meyer RA, Hickey JW, Aje K, Cheung KN et al. 2017. Biomimetic biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanoma. Biomaterials 118:16–26
    [Google Scholar]
  131. 131.  He C, Duan X, Guo N, Chan C, Poon C et al. 2016. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 7:12499
    [Google Scholar]
  132. 132.  Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z 2016. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett 16:2334–40
    [Google Scholar]
  133. 133.  Teo PY, Yang C, Whilding LM, Parente-Pereira AC, Maher J et al. 2015. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Adv. Healthc. Mater. 4:1180–89
    [Google Scholar]
  134. 134.  Li S-Y, Liu Y, Xu C-F, Shen S, Sun R et al. 2016. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J. Control. Release 231:17–28
    [Google Scholar]
  135. 135.  Iwamura K, Kato T, Miyahara Y, Naota H, Mineno J et al. 2012. siRNA-mediated silencing of PD-1 ligands enhances tumor-specific human T-cell effector functions. Gene Ther 19:959–66
    [Google Scholar]
  136. 136.  Alshamsan A, Hamdy S, Samuel J, El-Kadi AOS, Lavasanifar A, Uludağ H 2010. The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials 31:1420–28
    [Google Scholar]
  137. 137.  Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J et al. 2009. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–79
    [Google Scholar]
  138. 138.  Rosenberg SA, Restifo NP 2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68
    [Google Scholar]
  139. 139.  Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM et al. 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:1507–17
    [Google Scholar]
  140. 140.  Davila ML, Riviere I, Wang XY, Bartido S, Park J et al. 2014. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6:224ra25
    [Google Scholar]
  141. 141.  Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W et al. 2017. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12:813–20
    [Google Scholar]
  142. 142.  Mellman I, Coukos G, Dranoff G 2011. Cancer immunotherapy comes of age. Nature 480:480–89
    [Google Scholar]
  143. 143.  Weathers SP, Gilbert MR 2015. Current challenges in designing GBM trials for immunotherapy. J. Neurooncol. 123:331–37
    [Google Scholar]
  144. 144.  Le Mercier M, Fortin S, Mathieu V, Kiss R, Lefranc F 2010. Galectins and gliomas. Brain Pathol 20:17–27
    [Google Scholar]
  145. 145.  Van Woensel M, Wauthoz N, Rosiere R, Mathieu V, Kiss R et al. 2016. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release 227:71–81
    [Google Scholar]
  146. 146.  Park J, Wrzesinski SH, Stern E, Look M, Criscione J et al. 2012. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11:895–905
    [Google Scholar]
  147. 147.  Maus MV, Thomas AK, Leonard DGB, Allman D, Addya K et al. 2002. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat. Biotechnol. 20:143–48
    [Google Scholar]
  148. 148.  Sunshine JC, Green JJ 2013. Nanoengineering approaches to the design of artificial antigen-presenting cells. Nanomedicine 8:1173–89
    [Google Scholar]
  149. 149.  Sunshine JC, Perica K, Schneck JP, Green JJ 2014. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 35:269–77
    [Google Scholar]
  150. 150.  Davis ME 2009. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6:659–68
    [Google Scholar]
  151. 151.  Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D et al. 2014. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. PNAS 111:11449–54
    [Google Scholar]
  152. 152.  Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J et al. 2012. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4:128ra39
    [Google Scholar]
  153. 153.  Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC et al. 2016. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin. Cancer Res. 22:3157–63
    [Google Scholar]
  154. 154.  Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M et al. 2011. A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer 104:593–98
    [Google Scholar]
  155. 155.  Gaur S, Chen L, Yen T, Wang Y, Zhou B et al. 2012. Preclinical study of the cyclodextrin-polymer conjugate of camptothecin CRLX101 for the treatment of gastric cancer. Nanomed. Nanotechnol. Biol. Med. 8:721–30
    [Google Scholar]
  156. 156.  Weiss GJ, Chao J, Neidhart JD, Ramanathan RK, Bassett D et al. 2013. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Investig. New Drugs 31:986–1000
    [Google Scholar]
  157. 157.  Pham E, Birrer MJ, Eliasof S, Garmey EG, Lazarus D et al. 2015. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin. Cancer Res. 21:808–18
    [Google Scholar]
  158. 158.  Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R et al. 2005. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer 92:1240–46
    [Google Scholar]
  159. 159.  Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M et al. 2007. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer 97:170–76
    [Google Scholar]
  160. 160.  Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y et al. 2012. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investig. New Drugs 30:1621–27
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084055
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084055
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error