Skip to main content
Log in

Altered ivermectin pharmacology and defective visual system in Drosophila mutants for histamine receptor HCLB

  • Original Paper
  • Published:
Invertebrate Neuroscience

An Erratum to this article was published on 21 November 2008

Abstract

The Drosophila gene hclB encodes a histamine-gated chloride channel, which can be activated by the neurotoxin ivermectin when expressed in vitro. We have identified two novel hclB mutants, carrying either a missense mutation (P293S, allele hclB T1) or a putative null mutation (W111*, allele hclB T2), as well as a novel splice form of the gene. In survival studies, hclB T1 mutants were more sensitive to ivermectin than wild-type, whereas hclB T2 were more resistant. Electroretinogram recordings from the two mutants exhibited enlarged peak amplitudes of the transient components, indicating altered synaptic transmission between retinal photoneurons and their target cells. Ivermectin treatment severely affected or completely suppressed these transient components in an allele-specific manner. This suppression of synaptic signals by ivermectin was dose-dependent. These results identify HCLB as an important in vivo target for ivermectin in Drosophila melanogaster, and demonstrate the involvement of this protein in the visual pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babcock MC, Stowers RS, Leither J, Goodman CS, Pallanck LJ (2003) A genetic screen for synaptic transmission mutants mapping to the right arm of chromosome 3 in Drosophila. Genetics 165:171–183

    PubMed  CAS  Google Scholar 

  • Benzer S (1967) Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc Natl Acad Sci USA 58:1112–1119. doi:10.1073/pnas.58.3.1112

    Article  PubMed  Google Scholar 

  • Buchner E, Buchner S, Burg MG, Hofbauer A, Pak WL, Pollack I (1993) Histamine is a major mechanosensory neurotransmitter candidate in Drosophila melanogaster. Cell Tissue Res 273:119–125. doi:10.1007/BF00304618

    Article  PubMed  CAS  Google Scholar 

  • Burg MG, Sarthy PV, Koliantz G, Pak WL (1993) Genetic and molecular identification of a Drosophila histidine decarboxylase gene required in photoreceptor transmitter synthesis. EMBO J 12:911–919

    PubMed  CAS  Google Scholar 

  • Carland JE, Moorhouse AJ, Barry PH, Johnston GA, Chebib M (2004) Charged residues at the 2’ position of human GABAC rho 1 receptors invert ion selectivity and influence open state probability. J Biol Chem 279:54153–54160. doi:10.1074/jbc.M410625200

    Article  PubMed  CAS  Google Scholar 

  • Cascio M (2004) Structure and function of the glycine receptor and related nicotinicoid receptors. J Biol Chem 279:19383–19386. doi:10.1074/jbc.R300035200

    Article  PubMed  CAS  Google Scholar 

  • Clark JM, Scott JG, Campos F, Bloomquist JR (1995) Resistance to avermectins: extent, mechanisms, and management implications. Annu Rev Entomol 40:1–30. doi:10.1146/annurev.en.40.010195.000245

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman CL, Delany NS, Woods DJ, Wolstenholme AJ (2001) High-affinity ivermectin binding to recombinant subunits of the Haemonchus contortus glutamate-gated chloride channel. Mol Biochem Parasitol 114:161–168. doi:10.1016/S0166-6851(01)00258-4

    Article  PubMed  CAS  Google Scholar 

  • Connolly CN, Wafford KA (2004) The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans 32:529–534. doi:10.1042/BST0320529

    Article  PubMed  CAS  Google Scholar 

  • Coombe PE (1986) The large monopolar cells L1 and L2 are responsible for the ERG transients in Drosophila. J Comp Physiol 159:655–666. doi:10.1007/BF00612038

    Article  Google Scholar 

  • Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP (1996) Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem 271:20187–20191. doi:10.1074/jbc.271.27.16035

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–452

    Article  PubMed  CAS  Google Scholar 

  • Geng C, Leung HT, Skingsley DR, Iovchev MI, Yin Z, Semenov EP, Burg MG, Hardie RC, Pak WL (2002) Target of Drosophila photoreceptor synaptic transmission is histamine-gated chloride channel encoded by ort (hclA). J Biol Chem 277:42113–42120

    Article  Google Scholar 

  • Georgiev GP, Wolstenholme AJ, Pak WL, Semenov EP (2002) Differential responses to avermectins in ort mutants of Drosophila melanogaster. Pestic Biochem Physiol 72:65–71

    Article  CAS  Google Scholar 

  • Gisselmann G, Pusch H, Hovemann BT, Hatt H (2002) Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nature Neurosci 5:11–12

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol (A) 161:201–213

    Article  CAS  Google Scholar 

  • Hardie RC (1989a) A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339:704–706

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC (1989b) Neuroatransmitters in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Heidelberg, pp 235–256

    Google Scholar 

  • Heisenberg M (1971) Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. J Exp Biol 55:85–100

    PubMed  CAS  Google Scholar 

  • Hong S-T, Bang S, Paik D, Kang D, Hwang S, Jeon K, Chun B, Hyun S, Lee Y, Kim J (2006) Histamine and its receptors modulate temperature-preference behaviours in Drosophila. J Neurosci 26:7245–7256

    Article  PubMed  CAS  Google Scholar 

  • Iovchev M, Kodrov P, Wolstenholme AJ, Pak WL, Semenov EP (2002) Altered drug resistance and recovery from paralysis in Drosophila melanogaster with a deficient histamine-gated chloride channel. J Neurogenet 16:249–261

    Article  PubMed  CAS  Google Scholar 

  • Kane NS, Hirschberg B, Qian S, Hunt D, Thomas B, Brochu R, Ludmerer SW, Zheng W, Smith MH, Arena JP, Cohen CJ, Schmatz D, Warmke J, Cully DF (2000) Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proc Natl Acad Sci USA 97:13949–13954

    Article  PubMed  CAS  Google Scholar 

  • Kao PN, Karlin A (1986) Acetylholine receptor binding site contains a disulfide crosslink between adjacent half-cystinil residues. J Biol Chem 261:8085–8088

    PubMed  CAS  Google Scholar 

  • Karlin A (2002) Emerging structure of the nicotinic acetylholine receptors. Nat Rev Neurosci 3:102–114

    Article  PubMed  CAS  Google Scholar 

  • Karlin A, Akabas MH (1995) Toward a structural basis for the function of nicotinic acetylholine receptors and their cousins. Neuron 15:1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Koenig J, Merriam JR (1977) Autosomal ERG mutants. Dros Inf Serv 52:50–51

    Google Scholar 

  • Kolodziejczyk A, Xuejun S, Meinertzhagen IA, Nassel DR (2008) Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS ONE 3:e2110

    Article  PubMed  Google Scholar 

  • Koundakjian EJ, Cowan DM, Hardy RW, Becker AH (2004) The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167:203–206

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Target induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed  CAS  Google Scholar 

  • Melzig J, Buchner S, Wiebel F, Wolf R, Burg M, Pak WL, Buchner E (1996) Genetic depletion of histamine from the nervous system of Drosophila eliminates specific visual and mechanosensory behavior. J Comp Physiol 179:763–773

    Article  CAS  Google Scholar 

  • Nassel DR (1999) Histamine in the brain of insects: a review. Microsc Res Tech 44:121–136

    Article  PubMed  CAS  Google Scholar 

  • O’Tousa JE, Leonard DS, Pak WL (1989) Morphological defects in oraJK84 photoreceptors caused by mutation in R1–6 opsin gene of Drosophila. J Neurogenet 6:41–52

    Article  PubMed  CAS  Google Scholar 

  • Pak WL, Grossfield J, Arnold KS (1970) Mutants of the visual pathway of Drosophila melanogaster. Nature 227:518–520

    Article  PubMed  CAS  Google Scholar 

  • Pantazis A, Segaran A, Liu CH, Nikolaev A, Rister J, Thum AS, Roeder T, Semenov E, Juusola M, Hardie RC (2008) Distinct roles for two histamine receptors (hclA and hclB) at the Drosophila photoreceptor synapse. J Neurosci 28:7250–7259

    Article  PubMed  CAS  Google Scholar 

  • Pless SA, Dibas MI, Lester HA, Lynch JW (2007) Conformational variability of the glycine receptor M2 domain in response to activation by different agonists. J Biol Chem 282:36057–36067

    Article  PubMed  CAS  Google Scholar 

  • Rohrer SP, Jacobson EB, Hayes EC, Birzin ET, Schaeffer JM (1994) Immunoaffinity purification of avermectin-binding proteins from the free-living nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster. Biochem J 302:339–345

    PubMed  CAS  Google Scholar 

  • Saul B, Kuner T, Sobetzko D, Brune W, Hanefeld F, Meinck HM, Becker CM (1999) Novel GLRA1 missense mutation (P250T) in dominant hyperekplexia defines an intracellular determinant of glycine receptor channel gating. J Neurosci 19:869–877

    PubMed  CAS  Google Scholar 

  • Schnizler K, Saeger B, Pfeffer C, Gerbaulet A, Ebbinghaus-Kintscher U, Methfessel C, Franken EM, Raming K, Wetzel CH, Saras A, Pusch H, Hatt H, Gisselmann G (2005) A novel chloride channel in Drosophila melanogaster is inhibited by protons. J Biol Chem 280:16254–16262

    Article  PubMed  CAS  Google Scholar 

  • Shan Q, Haddrill JL, Lynch JW (2001) Ivermectin, an unconventional agonist of the glycine receptor chloride channel. J Biol Chem 276:12556–12564

    Article  PubMed  CAS  Google Scholar 

  • Shen XM, Ohno K, Tsujino A, Brengman JM, Gingold M, Sine SM, Engel AG (2003) Mutation causing severe myasthenia reveals functional asymmetry of AChR signature cystine loops in agonist binding and gating. J Clin Invest 111:497–505

    PubMed  CAS  Google Scholar 

  • Skingsley DR, Laughlin SB, Hardie RC (1995) Properties of histamine-activated chloride channels in the large monopolar cells of the dipteran compound eye: a comparative study. J Comp Physiol (A) 176:611–623

    Article  CAS  Google Scholar 

  • Stuart AE (1999) From fruit flies to barnacles, histamine is the neurotransmitter of Arthropod photoreceptors. Neuron 22:431–433

    Article  PubMed  CAS  Google Scholar 

  • Stuart AE, Borycz J, Meinertzhagen IA (2007) The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Prog Neurobiol 82:202–207

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughtput TILLING. Genome Res 13:524–530

    Article  PubMed  CAS  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56:603–618

    Article  PubMed  CAS  Google Scholar 

  • Witte I, Kreienkamp HJ, Gewecke M, Roeder T (2002) Putative histamine-gated chloride channel subunits of the insect visual system and thoracic ganglion. J Neurochem 83:504–514

    Article  PubMed  CAS  Google Scholar 

  • Wotring VE, Miller TS, Weiss DS (2003) Mutations at the GABA receptor selectivity filter: a possible role for effective charges. J Physiol 548(Pt 2):527–540

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Hirschberg B, Wang AP, Hunt DC, Ludmerer SW, Schmatz DM, Cully DF (2002) Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J Biol Chem 227:2000–2005

    Article  Google Scholar 

  • Zheng L, de Polavieja GG, Wolfram V, Asyali MH, Hardie RC, Juusola M (2006) Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila. J Gen Physiol 127:495–510

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Onik Medjelian (Actavis) for kind providing us with hydroxyzine. We thank Nely Balatcheva, Leny Markova and Margarita Sotirova for technical help. Flies Df(3R)E79/MRS were provided by Bloomington Drosophila Stock Center, USA. This study was supported by a collaborative research grant from the Wellcome Trust (a CRIG award GR075386MA to A. W. and E. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Semenov.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10158-008-0083-5

Electronic supplementary material

Below is the link to the electronic supplementary material.

10158_2008_78_MOESM1_ESM.eps

Intensity dependence of the photoreceptor component of the ERG. All symbols follow descriptions given to Figure 3. a OR/Df(3R)E79; b hclB T1/Df(3R)E79; c hclB T2/Df(3R)E79 (EPS 98 kb)

10158_2008_78_MOESM2_ESM.eps

The time-to-peak values of the transient components on ERGs from adult females of three genotypes. a and d OR/Df(3R)E79, b and e hclB T1/Df(3R)E79, c and f hclB T2/Df(3R)E79 (EPS 141 kb)

10158_2008_78_MOESM3_ESM.eps

Amplitudes of the photoreceptor component of the ERGs following treatment with ivermectin. a OR/Df(3R)E79, b hclB T1/Df(3R)E79, c hclB T2/Df(3R)E79 (EPS 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yusein, S., Velikova, N., Kupenova, P. et al. Altered ivermectin pharmacology and defective visual system in Drosophila mutants for histamine receptor HCLB. Invert Neurosci 8, 211–222 (2008). https://doi.org/10.1007/s10158-008-0078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-008-0078-2

Keywords

Navigation