Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

An Overview of Injectable Thermo-Responsive Hydrogels and Advances in their Biomedical Applications

Author(s): Fabián Ávila-Salas and Esteban F. Durán-Lara*

Volume 27, Issue 34, 2020

Page: [5773 - 5789] Pages: 17

DOI: 10.2174/0929867325666190603110045

Price: $65

Abstract

Background: Injectable hydrogels are a thermo-responsive system based on biomaterials. Injectable hydrogels have been broadly investigated mainly as vehicles or scaffolds of therapeutic agents that include drugs, proteins, cells, and bioactive molecules among others, utilized in the treatment of diseases such as cancers and the repair and regeneration of tissues.

Results: There are several studies that have described the multiple features of hydrogels. However, the main aspect that breaks the paradigm in the application of hydrogels is the thermoresponsiveness that some of them have, which is an abrupt modification in their properties in response to small variations in temperature. For that reason, the thermo-responsive hydrogels with the unique property of sol-gel transition have received special attention over the past decades. These hydrogels show phase transition near physiological human body temperature. This feature is key for being applied in promising areas of human health-related research.

Conclusion: The purpose of this study is the overview of injectable hydrogels and their latest advances in medical applications including bioactive compound delivery, tissue engineering, and regenerative medicine.

Keywords: Thermo responsive hydrogels, injectable hydrogels, biomaterials, sol-gel transition, drug delivery, tissue engineering, regenerative medicine.

[1]
Hilmi, B.; Hamid, Z.A.; Akil, H.M.; Yahaya, B.H. The characteristics of the smart polymeras temperature or PH-responsive hydrogel. Procedia Chem., 2016, 19, 406-409.
[http://dx.doi.org/10.1016/j.proche.2016.03.031]
[2]
Vishnubhakthula, S.; Elupula, R.; Durán-Lara, E.F. Recent advances in hydrogel-based drug delivery for melanoma cancer therapy: A mini review. J. Drug Deliv., 2017.20177275985
[http://dx.doi.org/10.1155/2017/7275985 ] [PMID: 28852576]
[3]
Nguyen, Q.V.; Huynh, D.P.; Park, J.H.; Lee, D.S. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur. Polym. J., 2015, 72, 602-619.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.03.016]
[4]
Ahmed, E.M. Hydrogel: preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006 ] [PMID: 25750745]
[5]
Rwei, S.P.; Tuan, H.N.A.; Chiang, W.Y.; Way, T.F. Synthesis and characterization of pH and thermo dual-responsive hydrogels with a semi-IPN structure based on N-Isopropylacrylamide and Itaconamic Acid. Materials (Basel), 2018, 11(5), 696.
[http://dx.doi.org/10.3390/ma11050696 ] [PMID: 29710793]
[6]
Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 2015, 65, 252-267.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[7]
Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. Rep., 2015, 93, 1-49.
[http://dx.doi.org/10.1016/j.mser.2015.04.001 ] [PMID: 27134415]
[8]
Willner, I. Stimuli-controlled hydrogels and their applications. Acc. Chem. Res., 2017, 50(4), 657-658.
[http://dx.doi.org/10.1021/acs.accounts.7b00142 ] [PMID: 28415844]
[9]
Bukhari, S.M.H.; Khan, S.; Rehanullah, M.; Ranjha, N.M. Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Int. J. Polym. Sci., 2015, (4), 1-15.
[http://dx.doi.org/10.1155/2015/187961]
[10]
Deen, G.R.; Loh, X.J. Stimuli-responsive cationic hydrogels in drug delivery applications. Gels, 2018, 4(1), 13.
[http://dx.doi.org/10.3390/gels4010013 ] [PMID: 30674789]
[11]
Seo, J.Y.; Lee, B.; Kang, T.W.; Noh, J.H.; Kim, M.J.; Ji, Y.B.; Ju, H.J.; Min, B.H.; Kim, M.S. Electrostatically inter-active injectable hydrogels for drug delivery. Tissue engi-neering and regenerative medicine. Tissue Eng. Regen. Med., 2018, 15(5), 513-520.
[http://dx.doi.org/10.1007/s13770-018-0146-6 ] [PMID: 30603575]
[12]
Yu, Y.; Chang, X.; Ning, H.; Zhang, S. Synthesis and characterization of thermoresponsive hydrogels cross-linked with chitosan. Cent. Eur. J. Chem., 2008, 6(1), 107-113.
[13]
Jalani, G.; Rosenzweig, D.H.; Makhoul, G.; Abdalla, S.; Cecere, R.; Vetrone, F.; Haglund, L.; Cerruti, M. Tough, in-situ thermogelling, injectable hydrogels for biomedical applications. Macromol. Biosci., 2015, 15(4), 473-480.
[http://dx.doi.org/10.1002/mabi.201400406 ] [PMID: 25557500]
[14]
Dimatteo, R.; Darling, N.J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev., 2018, 127, 167-184.
[http://dx.doi.org/10.1016/j.addr.2018.03.007 ] [PMID: 29567395]
[15]
Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res., 2017, 5, 17014.
[http://dx.doi.org/10.1038/boneres.2017.14 ] [PMID: 28584674]
[16]
Yang, J.A.; Yeom, J.; Hwang, B.W.; Hoffman, A.S.; Hahn, S.K. In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci., 2014, 39(12), 1973-1986.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006]
[17]
Tang, S.; Floy, M.; Bhandari, R.; Sunkara, M.; Morris, A.J.; Dziubla, T.D.; Hilt, J.Z. Synthesis and characterization of thermoresponsive hydrogels based on N-isopro-pylacrylamide crosslinked with 4,4′-dihydroxybiphenyl diacrylate. ACS Omega, 2017, 2(12), 8723-8729.
[http://dx.doi.org/10.1021/acsomega.7b01247 ] [PMID: 29302630]
[18]
Yeh, M.Y.; Zhao, J.Y.; Hsieh, Y.R.; Lin, J.H.; Chen, F.Y.; Chakravarthy, R.D.; Chung, P.C.; Lin, H.C.; Hung, S.C. (Reverse thermo-responsive hydrogels prepared from Plu-ronic F127 and gelatin composite materials. RSC Advances, 2017, 7, 21252-21257.
[http://dx.doi.org/10.1039/C7RA01118K]
[19]
El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract., 2013, 2013(3), 316-342.
[http://dx.doi.org/10.5339/gcsp.2013.38 ] [PMID: 24689032]
[20]
Cohn, D.; Sosnik, A.; Levy, A. Improved reverse thermo-responsive polymeric systems. Biomaterials, 2003, 24(21), 3707-3714.
[http://dx.doi.org/10.1016/S0142-9612(03)00245-X ] [PMID: 12818542]
[21]
Thambi, T.; Li, Y.; Lee, D.S. Injectable hydrogels for sustained release of therapeutic agents. J. Control. Release, 2017, 267, 57-66.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.006 ] [PMID: 28827094]
[22]
Teotia, A.K.; Sami, H.; Kumar, A. Thermo-responsive polymers: structure and design of smart materials in: Switchable and Responsive Surfaces and Materials for Biomedical Applications; Zhang, Z., Ed.; Woodhead Publishing: Oxford, 2015, pp. 299-306.
[http://dx.doi.org/10.1016/B978-0-85709-713-2.00001-8]
[23]
Klouda, L.; Perkins, K.R.; Watson, B.M.; Hacker, M.C.; Bryant, S.J.; Raphael, R.M.; Kasper, F.K.; Mikos, A.G. Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater., 2011, 7(4), 1460-1467.
[http://dx.doi.org/10.1016/j.actbio.2010.12.027 ] [PMID: 21187170]
[24]
Gandhi, A.; Paul, A.; Sen, S.O.; Sen, K.K. Studies on ther-moresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J. Pharm., 2015, 10, 99-107.
[25]
Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, K. Responsive polymers in controlled drug delivery. Prog. Polym. Sci., 2018, 33(11), 1088-1118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[26]
Cho, J.K.; Hong, K.Y.; Park, J.W.; Yang, H.K.; Song, S.C. Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly(organophosphazene) hydrogel. J. Drug Target., 2011, 19(4), 270-280.
[http://dx.doi.org/10.3109/1061186X.2010.499461 ] [PMID: 20608785]
[27]
Chatterjee, S.; Hui, P.C.; Kan, C. Thermoresponsive hydrogels and their biomedical applications: special insight into their applications in textile based transdermal therapy. Polymers , 2018, 10(5), 1-25.
[http://dx.doi.org/10.3390/polym10050480]]
[28]
Sá-Lima, H.; Caridade, S.G.; Mano, J.F.; Reis, R.L. Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 2010, 6, 5184-5195.
[http://dx.doi.org/10.1039/c0sm00041h]
[29]
Li, Y.; Meng, H.; Liu, Y.; Lee, B.P. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. ScientificWorldJournal, 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/685690] [PMID: 25853146]
[30]
Molinos, M.; Carvalho, V.; Silva, D.M.; Gama, F.M. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system. Biomacromolecules, 2012, 13(2), 517-527.
[http://dx.doi.org/10.1021/bm2015834 ] [PMID: 22288730]
[31]
Xing, R.; Li, S.; Zhang, N.; Shen, G.; Möhwald, H.; Yan, X. Self-assembled injectable peptide hydrogels capable of trig-gering antitumor immune response. Biomacromolecules, 2017, 18(11), 3514-3523.
[http://dx.doi.org/10.1021/acs.biomac.7b00787 ] [PMID: 28721731]
[32]
Bakaic, E.; Smeets, N.B.S.; Hoare, T. Injectable hydrogels based on poly (ethylene glycol) and derivatives as functional biomaterials. RCS Adv., 2015, 5, 35469-35486.
[http://dx.doi.org/10.1039/C4RA13581D]
[33]
Cho, S.H.; Lim, S.M.; Han, D.K.; Yuk, S.H. Im, G.I.; Lee, J.H. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. J. Biomater. Sci. Polym. Ed., 2009, 20(7-8), 863-876.
[http://dx.doi.org/10.1163/156856209X444312 ] [PMID: 19454157]
[34]
Zhang, K.; Shi, X.; Lin, X.; Yao, C.; Shen, L.; Feng, Y. Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats. Drug Deliv., 2015, 22(3), 375-382.
[http://dx.doi.org/10.3109/10717544.2014.891272 ] [PMID: 24601854]
[35]
Boonlai, W.; Tantishaiyakul, V.; Hirun, N.; Sangfai, T.; Suknuntha, K. Thermosensitive poloxamer 407/poly (acrylic acid) hydrogels with potential application as injectable drug delivery system. AAPS PharmSciTech, 2018, 19(5), 2103-2117.
[http://dx.doi.org/10.1208/s12249-018-1010-7 ] [PMID: 29696613]
[36]
Alexander, A. Ajazuddin; Khan, J.; Saraf, S.; Saraf, S. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J. Control. Release, 2013, 172(3), 715-729.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.006 ] [PMID: 24144918]
[37]
Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci., 2014, 15(3), 3640-3659.
[http://dx.doi.org/10.3390/ijms15033640 ] [PMID: 24590126]
[38]
Poudel, A.J.; He, F.; Huang, L.; Xiao, L.; Yang, G. Supramolecular hydrogels based on poly (ethylene glycol)-poly (lactic acid) block copolymer micelles and α-cyclodextrin for potential injectable drug delivery system. Carbohydr. Polym., 2018, 194, 69-79.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.035 ] [PMID: 29801860]
[39]
Hruschka, V.; Saeed, A.; Slezak, P.; Cheikh Al Ghanami, R.; Feichtinger, G.A.; Alexander, C.; Redl, H.; Shakesheff, K.; Wolbank, S. Evaluation of a thermoresponsive polycaprolactone scaffold for in vitro three-dimensional stem cell differentiation. Tissue Eng. Part A, 2015, 21(1-2), 310-319.
[http://dx.doi.org/10.1089/ten.tea.2013.0710 ] [PMID: 25167885]
[40]
Zhao, X.; Li, P.; Guo, B.; Ma, P.X. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater., 2015, 26, 236-248.
[http://dx.doi.org/10.1016/j.actbio.2015.08.006 ] [PMID: 26272777]
[41]
Yan, S.; Wang, T.; Li, X.; Jian, Y.; Zhang, K.; Li, G.; Yin, J. Fabrication of injectable hydrogels based on poly (l-glutamic acid) and chitosan. RSC Advances, 2017, 7, 17005-17019.
[http://dx.doi.org/10.1039/C7RA01864A]
[42]
Baghaei, S.; Khorasani, M.T. Preparation and characteriza-tion of a thermal responsive of poly(N-isopropylacrylamide)/chitosan/gelatin hydrogels. Biomat. Biomed. Eng. (N.Y.), 2014, 1(2), 105-116.
[43]
Lee, J.H. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater. Res., 2018, 22, 27.
[http://dx.doi.org/10.1186/s40824-018-0138-6 ] [PMID: 30275970]
[44]
Bhowmik, D.; Gopinath, H.; Kumar, B.P.; Duraivel, S.; Kumar, K.S.P. Controlled release drug delivery systems. Pharma Innovation Journal, 2012, 1, 24-32.
[45]
Neeves, K. Delivery from Hydrogels. Student Guide. Cornell Science Inquiry Partnerships. Available at https://pdfs.semanticscholar.org/2293/4b4a218618139c4166dc153f90241b126dcd.pdf2019 (Accessed Date: October, 2018)
[46]
Ummadi, S.; Shravani, B.; Rao, N.R.R.; Reddy, M.S.; Nayak, B.S. Overview on controlled release dosage form. Int. J. Pharma Sci., 2013, 3(4), 258-269.
[47]
Norouzi, M.; Nazari, B.; Miller, D.W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today, 2016, 21(11), 1835-1849.
[http://dx.doi.org/10.1016/j.drudis.2016.07.006 ] [PMID: 27423369]
[48]
Zhou, M.; Liu, K.; Qian, X. A facile preparation of p H temperature dual stimuli‐responsive supramolecular hydrogel and its controllable drug release. J. Appl. Polym. Sci., 2016, 133(15), 43279.
[http://dx.doi.org/10.1002/app.43279]
[49]
Pertici, V.; Pin-Barre, C.; Rivera, C.; Pellegrino, C.; Laurin, J.; Gigmes, D.; Trimaille, T. Degradable and injectable hydrogel for drug delivery in soft tissues. Biomacromolecules, 2019, 20(1), 149-163.
[http://dx.doi.org/10.1021/acs.biomac.8b01242 ] [PMID: 30376309]
[50]
Huynh, D.P.; Nguyen, M.K.; Pi, B.S.; Kim, M.S.; Chae, S.Y.; Lee, K.C.; Kim, B.S. Kim, Sung, W.; Lee, D.S. Biomaterials, 2008, 29(16), 2527-2534.
[http://dx.doi.org/10.1016/j.biomaterials.2008.02.016 ] [PMID: 18329707]
[51]
Li, C.; Wang, K.; Zhou, X.; Li, T.; Xu, Y.; Qiang, L.; Peng, M.; Xu, Y.; Xie, L.; He, C.; Wang, B.; Wang, J. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Biomed. Mater., 2019, 14(2)025006
[http://dx.doi.org/10.1088/1748-605X/aaf8ed ] [PMID: 30557856]
[52]
Gilarska, A.; Lewandowska-Łańcucka, J.; Horak, W.; Nowakowska, M. Collagen/chitosan/hyaluronic acid - based injectable hydrogels for tissue engineering applications - design, physicochemical and biological characterization. Colloids Surf. B Biointerfaces, 2018, 170, 152-162.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.004 ] [PMID: 29902729]
[53]
Qu, J.; Zhao, X.; Liang, Y.; Xu, Y.; Ma, P.X.; Guo, B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem. Eng. J., 2019, 362, 548-560.
[http://dx.doi.org/10.1016/j.cej.2019.01.028]
[54]
Lv, X.; Liu, Y.; Song, S.; Tong, C.; Shi, X.; Zhao, Y.; Zhang, J.; Hou, M. Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes. Carbohydr. Polym., 2019, 205, 312-321.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.067 ] [PMID: 30446110]
[55]
Chen, X.; Fu, W.; Cao, X.; Jiang, H.; Che, X.; Xu, X.; Ma, B.; Zhang, J. Peptide SIKVAV-modified chitosan hydrogels promote skin wound healing by accelerating angiogenesis and regulating cytokine secretion. Am. J. Transl. Res., 2018, 10(12), 4258-4268.
[PMID: 30662668]
[56]
Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183, 185-199.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.044 ] [PMID: 30172244]
[57]
Tong, X. F.; Zhao, F. Q.; Ren, Y. Z.; Zhang, Y.; Cui, Y. L.; Wang, Q. S. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. J. Biomed. Mater. Res., 2018, 106(2), 3292-3302.
[http://dx.doi.org/10.1002/jbm.a.36528 ] [PMID: 30242952]
[58]
Yan, S.; Wang, W.; Li, X.; Ren, J.; Yun, W.; Zhang, K.; Li, G.; Yin, J. Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(40), 6377-6390.
[http://dx.doi.org/10.1039/C8TB01928B ] [PMID: 32254646]
[59]
Shaghiera, A.D.; Widiyanti, P.; Yusuf, H. Synthesis and characterization of injectable hydrogels with varying colla-gen-chitosan-thymosin β4 composition for myocardial infarc-tion therapy. J. Funct. Biomater., 2018, 9(2), 33.
[http://dx.doi.org/10.3390/jfb9020033 ] [PMID: 29710844]
[60]
Hou, S.; Lake, R.; Park, S.; Edwards, S.; Jones, C.; Jeong, K.J. Injectable macroporous hydrogel formed by enzymatic cross-linking of gelatin microgels. ACS Appl Bio Mater, 2018, 1(5), 1430-1439.
[http://dx.doi.org/10.1021/acsabm.8b00380 ] [PMID: 31701093]
[61]
Liu, Y.; Cheong Ng, S.; Yu, J.; Tsai, W.B. Modification and crosslinking of gelatin-based biomaterials as tissue adhesives. Colloids Surf. B Biointerfaces, 2019, 174, 316-323.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.077 ] [PMID: 30472617]
[62]
Dong, Y.; Rodrigues, M.; Kwon, S.H.; Li, X. A, S.; Brett, E.A.; Elvassore, N.; Wang, W.; Gurtner, G.C. Acceleration of diabetic wound regeneration using an in situ-formed stem-cell-based skin substitute. Adv. Healthc. Mater., 2018, 7(17),e1800432.
[http://dx.doi.org/10.1002/adhm.201800432 ] [PMID: 30004192]
[63]
Luo, J.W.; Liu, C.; Wu, J.H.; Lin, L.X.; Fan, H.M.; Zhao, D.H.; Zhuang, Y.Q.; Sun, Y.L. In situ injectable hyaluronic acid/gelatin hydrogel for hemorrhage control. Mater. Sci. Eng. C, 2019, 98, 628-634.
[http://dx.doi.org/10.1016/j.msec.2019.01.034 ] [PMID: 30813066]
[64]
Fiorica, C.; Palumbo, F.S.; Pitarresi, G.; Allegra, M.; Puleio, R.; Giammona, G. Hyaluronic acid and elastin based hydrogel for three dimensional culture of vascular endothelial cells. J. Drug Deliv. Sci. Technol., 2018, 46, 28-33.
[http://dx.doi.org/10.1016/j.jddst.2018.04.017]
[65]
Mohandas, A.; Sun, W.; Nimal, T.R.; Shankarappa, S.A.; Hwang, N.S.; Jayakumar, R. Injectable chitosan-fibrin/nanocurcumin composite hydrogel for the enhancement of angiogenesis. Res. Chem. Intermed., 2018, 44(8), 4873-4887.
[http://dx.doi.org/10.1007/s11164-018-3340-1]
[66]
Frauchiger, D.A.; May, R.D.; Bakirci, E.; Tekari, A.; Chan, S.C.W.; Wöltje, M.; Benneker, L.M.; Gantenbein, B. Genipin-enhanced fibrin hydrogel and novel silk for intervertebral disc repair in a loaded bovine organ culture model. J. Funct. Biomater., 2018, 9(3)E40
[http://dx.doi.org/10.3390/jfb9030040 ] [PMID: 29937524]
[67]
Ma, X.; Liu, S.; Tang, H.; Yang, R.; Chi, B.; Ye, Z. In situ photocrosslinked hyaluronic acid and poly (γ-glutamic acid) hydrogels as injectable drug carriers for load-bearing tissue application. J. Biomater. Sci. Polym. Ed., 2018, 29(18), 2252-2266.
[http://dx.doi.org/10.1080/09205063.2018.1535820 ] [PMID: 30311855]
[68]
Mohd Isa, I.L.; Abbah, S.A.; Kilcoyne, M.; Sakai, D.; Dockery, P.; Finn, D.P.; Pandit, A. Implantation of hyaluronic acid hydrogel prevents the pain phenotype in a rat model of intervertebral disc injury. Sci. Adv., 2018, 4(4)eaaq0597
[http://dx.doi.org/10.1126/sciadv.aaq0597 ] [PMID: 29632893]
[69]
Li, Y.; Cao, J.; Han, S.; Liang, Y.; Zhang, T.; Zhao, H.; Wang, L.; Sun, Y. ECM based injectable thermo-sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis. Artif. Cells Nanomed. Biotechnol,, 2018. 46(Sup2), 152-160.
[http://dx.doi.org/10.1080/21691401.2018.1452752] [PMID: 29575932]
[70]
Wang, G.; Cao, X.; Dong, H.; Zeng, L.; Yu, C.; Chen, X. A hyaluronic acid based injectable hydrogel formed via pho-to-crosslinking reaction and thermal-induced diels-alder reaction for cartilage tissue engineering. Polymers (Basel), 2018, 10(9), 1-13.
[http://dx.doi.org/10.3390/polym10090949]
[71]
Christoffersson, J.; Aronsson, C.; Jury, M.; Selegård, R.; Aili, D.; Mandenius, C.F. Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Biofabrication, 2018, 11(1): 015013.
[http://dx.doi.org/10.1088/1758-5090/aaf657 ] [PMID: 30523863]
[72]
Rosenzweig, D.H.; Fairag, R.; Mathieu, A.P.; Li, L.; Eglin, D.; D’Este, M.; Steffen, T.; Weber, M.H.; Ouellet, J.A.; Haglund, L. Thermoreversible hyaluronan-hydrogel and autologous nucleus pulposus cell delivery regenerates human intervertebral discs in an ex vivo, physiological organ culture model. Eur. Cell. Mater., 2018, 36, 200-217.
[http://dx.doi.org/10.22203/eCM.v036a15 ] [PMID: 30370912]
[73]
Liao, H.T.; Tsai, M.J.; Brahmayya, M.; Chen, J.P. Bone regeneration using adipose-derived stem cells in injectable thermo-gelling hydrogel scaffold containing platelet-rich plasma and biphasic calcium phosphate. Int. J. Mol. Sci., 2018, 19(9), 1-18.
[http://dx.doi.org/10.3390/ijms19092537 ] [PMID: 30150580]
[74]
Hozumi, T.; Kageyama, T.; Ohta, S.; Fukuda, J.; Ito, T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff’s base formation. Biomacromolecules, 2018, 19(2), 288-297.
[http://dx.doi.org/10.1021/acs.biomac.7b01133 ] [PMID: 29284268]
[75]
Rezaeeyazdi, M.; Colombani, T.; Memic, A.; Bencherif, S.A. Injectable hyaluronic acid-co-gelatin cryogels for tissue-engineering applications. Materials (Basel), 2018, 11(8), 23-25.
[http://dx.doi.org/10.3390/ma11081374 ] [PMID: 30087295]
[76]
Jooybar, E.; Abdekhodaie, M.J.; Alvi, M.; Mousavi, A.; Karperien, M.; Dijkstra, P.J. An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells. Acta Biomater., 2019, 83, 233-244.
[http://dx.doi.org/10.1016/j.actbio.2018.10.031 ] [PMID: 30366137]
[77]
Kunisch, E.; Knauf, A-K.; Hesse, E.; Freudenberg, U.; Werner, C.; Bothe, F.; Diederichs, S.; Richter, W. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication, 2018, 11(1),015001.
[http://dx.doi.org/10.1088/1758-5090/aae75a ] [PMID: 30376451]
[78]
Ren, B.; Chen, X.; Ma, Y.; Du, S.; Qian, S.; Xu, Y.; Yan, Z.; Li, J.; Jia, Y.; Tan, H.; Ling, Z.; Chen, Y.; Hu, X. Dynamical release nanospheres containing cell growth factor from biopolymer hydrogel via reversible covalent conjugation. J. Biomater. Sci. Polym. Ed., 2018, 29(11), 1344-1359.
[http://dx.doi.org/10.1080/09205063.2018.1460140 ] [PMID: 29609508]
[79]
Bang, S.; Jung, U.W.; Noh, I. Synthesis and biocompatibility characterizations of in situ chondroitin sulfate-gelatin hydrogel for tissue engineering. Tissue Eng. Regen. Med., 2017, 15(1), 25-35.
[http://dx.doi.org/10.1007/s13770-017-0089-3 ] [PMID: 30603532]
[80]
Alinejad, Y.; Adoungotchodo, A.; Hui, E.; Zehtabi, F.; Lerouge, S. An injectable chitosan/chondroitin sulfate hydrogel with tunable mechanical properties for cell therapy/tissue engineering. Int. J. Biol. Macromol., 2018, 113, 132-141.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.069 ] [PMID: 29452185]
[81]
Zhang, Z.; Wang, X.; Wang, Y.; Hao, J. Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings. Biomacromolecules, 2018, 19(3), 980-988.
[http://dx.doi.org/10.1021/acs.biomac.7b01764 ] [PMID: 29451778]
[82]
Phogat, K.; Bandyopadhyay-Ghosh, S. Nanocellulose mediated injectable bio-nanocomposite hydrogel scaffold-microstructure and rheological properties. Cellulose, 2018, 25(10), 5821-5830.
[http://dx.doi.org/10.1007/s10570-018-2001-2]
[83]
Doench, I.; Torres-Ramos, M.E.W.; Montembault, A.; Nunes de Oliveira, P.; Halimi, C.; Viguier, E.; Heux, L.; Siadous, R.; Thiré, R.M.S.M.; Osorio-Madrazo, A. Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering. Polymers (Basel), 2018, 10(11), 1-27.
[http://dx.doi.org/10.3390/polym10111202 ] [PMID: 30961127]
[84]
Loh, E.Y.X.; Mohamad, N.; Fauzi, M.B.; Ng, M.H.; Ng, S.F.; Mohd Amin, M.C.I. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep., 2018, 8(1), 2875.
[http://dx.doi.org/10.1038/s41598-018-21174-7 ] [PMID: 29440678]
[85]
Basu, P.; Saha, N.; Alexandrova, R.; Andonova-Lilova, B.; Georgieva, M.; Miloshev, G.; Saha, P. Biocompatibility and biological efficiency of inorganic calcium filled bacterial cellulose based hydrogel scaffolds for bone bioengineering. Int. J. Mol. Sci., 2018, 19(12), 1-16.
[http://dx.doi.org/10.3390/ijms19123980 ] [PMID: 30544895]
[86]
Trivedi, P.; Saloranta-Simell, T.; Maver, U. Chitosan-cellulose multifunctional hydrogel beads: design, characterization and evaluation of cytocompatibility with breast adenocarcinoma and osteoblast cells. Bioengineering , 2018, 1(3), 1-16.
[87]
Liu, J.; Li, Z.; Lin, Q.; Jiang, X.; Yao, J.; Yang, Y.; Shao, Z.; Chen, X.A. Robust, resilient, and multi-functional soy protein-based hydrogel. ACS Sustain. Chem.& Eng., 2018, 6(11), 13730-13738.
[http://dx.doi.org/10.1021/acssuschemeng.8b01450]
[88]
Wang, C.; Fadeev, M.; Zhang, J.; Vázquez-González, M.; Davidson-Rozenfeld, G.; Tian, H.; Willner, I. Shape-memory and self-healing functions of DNA-based carboxymethyl cellulose hydrogels driven by chemical or light triggers. Chem. Sci. (Camb.), 2018, 9(35), 7145-7152.
[http://dx.doi.org/10.1039/C8SC02411A ] [PMID: 30310637]
[89]
Liu, C.; Han, J.; Pei, Y.; Du, J. Aptamer Functionalized DNA hydrogel for wise-stage controlled protein release. App. Sci., 2018, 8, 1-14.
[http://dx.doi.org/10.3390/app8101941]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy