Skip to main content
Log in

Assessment of an ultra-sensitive IFNγ immunoassay prototype for latent tuberculosis diagnosis

  • Original Article
  • Published:
European Cytokine Network Aims and scope

Abstract

Worldwide there are about 1.7 billion individuals with latent tuberculosis infection (LTBI) and only 5% to 15% will develop active tuberculosis (TB). It is recommended to treat only those most at risk of developing active TB to avoid problems of drug resistance. LTBI diagnosis involves reviewing the individual’s medical history, physical examination, and biological tests. Interferon gamma release assays (IGRA) can yield “undeterminate” or “uncertain” results, which makes clinical management decisions difficult. We assessed an ultra-sensitive immunoassay prototype based on single molecule array (SiMoA) technology to evaluate its overall performance, and in particular, its performance for indeterminate and uncertain positive or negative samples, as classified by the results from the current ELISA technique used for IFNγ quantification. We analyzed samples from hospitalized or consulting patients and healthcare workers from three hospitals in Paris, previously classified as negative (n = 30), positive (n = 35), uncertain negative (n = 25), uncertain positive (n = 31), or indeterminate (n = 30). We observed that with the SiMoA assay 83.3% of the indeterminate samples became interpretable and could be classified as negative, whereas 74% of uncertain positive samples were classified as positive. Most uncertain negative samples (72%) were reclassified as uncertain positive (68%) or positive (4%). The results suggest that the ultra-sensitive SiMoA IFNγ assay could represent a useful tool for the identification of true positive and negative samples among those giving indeterminate or uncertain results with the TB IGRA assay currently used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization. Tuberculosis 2018. Available from: https://doi.org/www.who.int/news-room/fact-sheets/detail/tuberculosis [last accessed 22 September 2018].

  2. Centres for Disease Control and Prevention. Tuberculosis 2018. Available from: https://wwwnc.cdc.gov/travel/ yellowbook/2018/infectious-diseases-related-to-travel/tuberculosis [last accessed 22 September 2018].

  3. World Health Organization. Guidelines on the management of latent tuberculosis infection. Spain: World Health Organization, 2015.

    Google Scholar 

  4. Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med 2016; 13: e1002152.

    Article  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization. Global tuberculosis report 2017. 2017. Available from: https://doi.org/www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf [last accessed 22 September 2018].

  6. Borisov AS, Bamrah Morris S, Njie GJ, et al. Update of recommendations for use of once-weekly isoniazid-rifapentine regimen to treat latent Mycobacterium tuberculosis infection. MMWR Morb Mortal Wkly Rep 2018;67: 723–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Esmail H, Barry 3rd. CE, Young DB, Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci 2014; 369: 20130437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huebner RE, Schein MF, Bass Jr. JB. The tuberculin skin test. Clin Infect Dis 1993; 17: 968–75.

    Article  CAS  PubMed  Google Scholar 

  9. Brock I, Munk ME, Kok-Jensen A, Andersen P. Performance of whole blood IFN-gamma; test for tuberculosis diagnosis based on PPD or the specific antigens ESAT-6 and CFP-10. Int J Tuberc Lung Dis 2001; 5: 462–7.

    CAS  PubMed  Google Scholar 

  10. Centres for Disease Control and Prevention. Centennial: Koch’s discovery of the tubercle bacillus. MMWR Morb Mortal Wkly Rep 1982; 31: 121–3.

    Google Scholar 

  11. Mazurek GH, LoBue PA, Daley CL, et al. Comparison of a whole-blood interferon gamma assay with tuberculin skin testing for detecting latent Mycobacterium tuberculosis infection. JAMA 2001; 286: 1740–7.

    Article  CAS  PubMed  Google Scholar 

  12. Meier T, Eulenbruch HP, Wrighton-Smith P, Enders G, Regnath T. Sensitivity of a new commercial enzyme-linked immunospot assay (T SPOT-TB) for diagnosis of tuberculosis in clinical practice. Eur J Clin Microbiol Infect Dis 2005; 24: 529–36.

    Article  CAS  PubMed  Google Scholar 

  13. Pai M, Denkinger CM, Kik SV, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev 2014; 27: 3–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Strickland N, Muller TL, Berkowitz N, et al. Characterization of Mycobacterium tuberculosis-specific cells using MHC class II tetramers reveals phenotypic differences related to HIV infection and tuberculosis disease. J Immunol 2017. doi: https://doi.org/10.4049/jimmunol.1700849 [Epub ahead of print].

  15. Kobashi Y, Mouri K, Obase Y, Fukuda M, Miyashita N, Oka M. Clinical evaluation of QuantiFERON TB-2G test for immunocompromised patients. Eur Respir J 2007; 30: 945–50.

    Article  CAS  PubMed  Google Scholar 

  16. Aichelburg MC, Tittes J, Breitenecker F, Reiberger T, Kohrgruber N, Rieger A. Prognostic value of indeterminate IFN-gamma release assay results in HIV-1 infection. J Clin Microbiol 2012; 50: 2767–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huson MA, Hoogendijk AJ, de Vos AF, Grobusch MP, van der Poll T. The impact of HIV infection on blood leukocyte responsiveness to bacterial stimulation in asymptomatic patients and patients with bloodstream infection. J Int AIDS Soc 2016; 19: 20759.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Syed Ahamed Kabeer B, Sikhamani R, Swaminathan S, Perumal V, Paramasivam P, Raja A. Role of interferon gamma release assay in active TB diagnosis among HIV infected individuals. PLoS One 2009; 4: e5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bao L, Li T, Diao N, et al. Fluctuating behavior and influential factors in the performance of the QuantiFERON-TB Gold In-Tube assay in the diagnosis of tuberculosis. PLoS One 2015; 10: e0103763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Banaei N, Gaur RL, Pai M. Interferon gamma release assays for latent tuberculosis: what are the sources of variability? J Clin Microbiol 2016; 54: 845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herrera V, Yeh E, Murphy K, Parsonnet J, Banaei N. Immediate incubation reduces indeterminate results for QuantiFERON-TB Gold in-tube assay. J Clin Microbiol 2010; 48: 2672–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yun JW, Chung HS, Koh WJ, Chung DR, Kim YJ, Kang ES. Significant reduction in rate of indeterminate results of the QuantiFERON-TB Gold In-Tube test by shortening incubation delay. J Clin Microbiol 2014; 52: 90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fabre V, Shoham S, Page KR, Shah M. High proportion of indeterminate QuantiFERON-TB Gold In-Tube results in an inpatient population is related to host factors and preanalytical steps. Open Forum Infect Dis 2014; 1: ofu088.

    PubMed  PubMed Central  Google Scholar 

  24. Qiagen. Gnowee — A QuantiFERON reference guide 2018. Available from: https://doi.org/us-tb.gnowee.net/technical-support [last accessed 22 September 2018].

  25. Schablon A, Harling M, Diel R, Ringshausen FC, Torres Costa J, Nienhaus A. Serial testing with an interferon-gamma release assay in German healthcare workers. GMS Krankenhhyg Interdiszip 2010; 5.

  26. Tagmouti S, Slater M, Benedetti A, et al. Reproducibility of interferon gamma (IFN-gamma) release assays. A systematic review. Ann Am Thorac Soc 2014; 11: 1267–76.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nemes E, Rozot V, Geldenhuys H, et al. Optimization and interpretation of serial QuantiFERON testing to measure acquisition of Mycobacterium tuberculosis infection. Am J Respir Crit Care Med 2017; 196: 638–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rissin DM, Fournier DR, Piech T, et al. Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. Anal Chem 2011; 83: 2279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilson DH, Rissin DM, Kan CW, et al. The Simoa HD-1 Analyzer: A novel fully automated digital immunoassay analyzer with single molecule sensitivity and multiplexing. J Lab Autom 2016; 21: 533–47.

    Article  CAS  PubMed  Google Scholar 

  30. O’Connell MA, Belanger BA, Haaland PD. Calibration and assay development using the four-parameter logistic model. Chemometr Intell Lab Syst 1993; 20: 97–114.

    Article  Google Scholar 

  31. Qiagen. QuantiFERON® -TB Gold Plus (QFT® -Plus) package insert 2017. Available from: https://doi.org/www.quantiferon.com/wp-content/uploads/2017/10/QFT-Plus-ELISA-IFU-L1095849-R02.pdf [last accessed 22 September].

  32. Bilic-Zulle L. Comparison of methods: passing and bablok regression. Biochem Med (Zagreb) 2011; 21: 49–52.

    Article  Google Scholar 

  33. Jung HJ, Kim TJ, Kim HS, et al. Analysis of predictors influencing indeterminate whole-blood interferon-gamma release assay results in patients with rheumatic diseases. Rheumatol Int 2014; 34: 1711–20.

    Article  CAS  PubMed  Google Scholar 

  34. Woo KS, Kim BG, Choi JL, Kim BR, Kim KH. Neutrophilto-lymphocyte ratio Is associated with impaired interferongamma release to phytohemagglutinin. PLoS One 2015; 10: e0125794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez-Moreno J, Garcia-Gasalla M, Losada-Lopez I, et al. IGRA testing in patients with immune-mediated inflammatory diseases: which factors influence the results? Rheumatol Int 2018; 38: 267–73.

    Article  CAS  PubMed  Google Scholar 

  36. Person AK, Pettit AC, Sterling TR. Diagnosis and treatment of latent tuberculosis infection: an update. Curr Respir Care Rep 2013; 2: 199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Komiya K, Ariga H, Nagai H, et al. Impact of peripheral lymphocyte count on the sensitivity of 2 IFN-gamma release assays, QFT-G and ELISPOT, in patients with pulmonary tuberculosis. Intern Med 2010; 49: 1849–55.

    Article  CAS  PubMed  Google Scholar 

  38. Lange B, Vavra M, Kern WV, Wagner D. Indeterminate results of a tuberculosis-specific interferon-gamma release assay in immunocompromised patients. Eur Respir J 2010; 35: 1179–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Dorgham.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salah, E., Dorgham, K., Lesénéchal, M. et al. Assessment of an ultra-sensitive IFNγ immunoassay prototype for latent tuberculosis diagnosis. Eur Cytokine Netw 29, 136–145 (2018). https://doi.org/10.1684/ecn.2018.0417

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2018.0417

Keywords

Navigation