Skip to main content
Log in

Serum levels of transforming growth factor β1 and C-reactive protein as possible markers of intra uterine insemination outcome

  • Original Article
  • Published:
European Cytokine Network Aims and scope

Abstract

Objective

Maternal immunity is important for the implantation phase, and exaggerated inflammatory responses may reduce the chance of implantation and pregnancy. Transforming growth factor β1 (TGF-β1) plays a role in the modulation of cellular growth, maturation and differentiation, extracellular matrix formation, immunoregulation, and apoptosis. In this study, we aimed to evaluate the changes in serum TGF-β1 and C-reactive protein (CRP) levels in infertile women following intrauterine insemination (IUI) according to the presence of pregnancy.

Methods

Sixty-three infertile patients were selected for the study in a nine-month period. Clomiphene citrate or recombinant gonadotropins were used for ovulation induction, and all patients underwent IUI following human chorionic gonadotropin (hCG) trigger. The pregnant and non-pregnant groups’ TGF-β1 and CRP levels were measured.

Results

The CRP levels increased significantly from the day of the hCG trigger to the 8th day after hCG trigger in the non-pregnant group (P = 0.003) whereas TGF-β1 levels decreased in the pregnant group (P = 0.001).

Conclusion

Maternal inflammatory responses play an important role in the occurrence of pregnancy. Changes in the levels of TGF-β1 and CRP may have a role in the outcome of IUI. Serial measurements of TGF-β1 and C-reactive protein, if confirmed by larger studies, may become valuable in predicting the outcome of IUI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tonguc E, Var T, Onalan G, et al. Comparison of the effectiveness of single versus double intrauterine insemination with three different timing regimens. Fertil Steril 2010; 94(4): 1267–70. doi: https://doi.org/10.1016/j.fertnstert.2009.08.030.

    Article  PubMed  Google Scholar 

  2. Demirel C, Engin Y, Üstün Y, Aydos K, Ünlü C. Erkek faktörüne bağlı infertilitede intrauterin inseminasyon başarısına etki edecek faktörlerin analizi, Turkiye Klinikleri. J Gynecol Obstet 2002; 12(1): 78–82.

    Google Scholar 

  3. Cantineau AE, Janssen MJ, Cohlen BJ, Allersma T. Synchronised approach for intrauterine insemination in subfertile couples. Cochrane Database Syst Rev 2014; 12: CD006942. doi: https://doi.org/10.1002/14651858.CD006942.pub3.

    Google Scholar 

  4. Dilbaz B, Özkaya E, Çınar M, Çakır E, Dilbaz S. Predictors of total gonadotropin dose required for follicular growth in controlled ovarian stimulation with intrauterin insemination cycles in patients with unexplained infertility or male subfertility. Gynecol Obstet Reprod Med 2011; 17(1): 28–34.

    Google Scholar 

  5. Ekin A, Solmaz U, Gezer C, et al. ıntrauterin inseminasyon öncesinde uygulanan laparoskopinin gebelik oranlarina etkisi. J Clin Obstet Gynecol 2015; 25(3): 173–80.

    Google Scholar 

  6. Duran HE, Morshedi M, Kruger T, Oehninger S. Intrauterine insemination: a systematic review on determinants of success. Hum Reprod Update 2002; 8(4): 373–84.

    Article  CAS  PubMed  Google Scholar 

  7. Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update 2005; 11(6): 613–30. doi: https://doi.org/10.1093/humupd/dmi023.

    Article  CAS  PubMed  Google Scholar 

  8. Martelossi Cebinelli GC, Paiva Trugilo K, Badaro Garcia S, Brajao de Oliveira K. TGF-beta1 functional polymorphisms: a review. Eur Cytokine Netw 2016; 27(4): 81–9. doi: https://doi.org/10.1684/ecn.2016.0382.

    PubMed  Google Scholar 

  9. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest 2000; 117(4): 1162–72.

    Article  CAS  PubMed  Google Scholar 

  10. Sabry D, Mostafa A, Marzouk S, et al. Neupogen and mesenchymal stem cells are the novel therapeutic agents in regeneration of induced endometrial fibrosis in experimental rats. Biosci Rep 2017; 37(5). doi: https://doi.org/10.1042/BSR20170794.

    Google Scholar 

  11. Ruiz C, Reyes-Botella C, Garcia-Martinez O, Montes MJ. Modulation of antigenic phenotype by IL-1beta, IFNgamma and TGFbeta on cultured human decidual stromal cells. Biosci Rep 2004; 24(1): 55–62.

    Article  CAS  PubMed  Google Scholar 

  12. Üstüner I, Sönmezer M, Atabekoğlu C, Ergun A, Güllü S, Aytaç R. Chronic inflammation in women with polycystic ovarian syndrome. Gynecol Obstet Reprod Med 2006; 12(3): 180–5.

    Google Scholar 

  13. Şentaş A, İnal M, SancIJ M, et al. Immunohistochemical evaluation of TGF-β isoforms in cases with ovarian endometriosis and follicular cyst. Gynecol Obstet Reprod Med 2007; 13(1): 34–7.

    Google Scholar 

  14. Moore T, Dveksler GS. Pregnancy-specific glycoproteins: complex gene families regulating maternal-fetal interactions. Int J Dev Biol 2014; 58(2–4): 273–80. doi: https://doi.org/10.1387/ijdb.130329gd.

    Article  CAS  PubMed  Google Scholar 

  15. Mantel PY, Schmidt-Weber CB. Transforming growth factor-beta: recent advances on its role in immune tolerance. Methods Mol Biol 2011; 677: 303–38. doi: https://doi.org/10.1007/978-1-60761-869-0_21.

    Article  CAS  PubMed  Google Scholar 

  16. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111(12): 1805–12. doi: https://doi.org/10.1172/JCI18921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999; 7(2): 169–77. doi: https://doi.org/10.1016/S0969-2126(99)80023-9.

    Article  CAS  PubMed  Google Scholar 

  18. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 2013; 310(20): 2191–4. doi: https://doi.org/10.1001/jama.2013.281053.

    Article  CAS  Google Scholar 

  19. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 2008; 28(4): 468–76. doi: https://doi.org/10.1016/j.immuni.2008.03.003.

    Article  CAS  PubMed  Google Scholar 

  20. Levin I, Gamzu R, Mashiach R, Lessing JB, Amit A, Almog B. Higher C-reactive protein levels during IVF stimulation are associated with ART failure. J Reprod Immunol 2007; 75(2): 141–4. doi: https://doi.org/10.1016/j.jri.2007.03.004.

    Article  CAS  PubMed  Google Scholar 

  21. Almagor M, Hazav A, Yaffe H. The levels of C-reactive protein in women treated by IVF. Hum Reprod 2004; 19(1): 104–6.

    Article  PubMed  Google Scholar 

  22. Orvieto R, Chen R, Ashkenazi J, Ben-Haroush A, Bar J, Fisch B. C-reactive protein levels in patients undergoing controlled ovarian hyperstimulation for IVF cycle. Hum Reprod 2004; 19(2): 357–9.

    Article  CAS  PubMed  Google Scholar 

  23. Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006; 25(3): 441–54. doi: https://doi.org/10.1016/j.immuni.2006.07.012.

    Article  CAS  PubMed  Google Scholar 

  24. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multi-focal inflammatory disease. Nature 1992; 359(6397): 693–9. doi: https://doi.org/10.1038/359693a0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27: 485–517. doi: https://doi.org/10.1146/annurev.immunol.021908.132710.

    Article  CAS  PubMed  Google Scholar 

  26. Jinushi M, Takehara T, Tatsumi T, et al. Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A leads to altered NK cell-induced modulation of dendritic cell functions in chronic hepatitis C virus infection. J Immunol 2004; 173(10): 6072–81.

    Article  CAS  PubMed  Google Scholar 

  27. Ingman WV, Robker RL, Woittiez K, Robertson SA. Null mutation in transforming growth factor beta1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest. Endocrinology 2006; 147(2): 835–45. doi: https://doi.org/10.1210/en.2005-1189.

    Article  CAS  PubMed  Google Scholar 

  28. Singh M, Orazulike NC, Ashmore J, Konje JC. Changes in maternal serum transforming growth factor beta-1 during pregnancy: a cross-sectional study. Biomed Res Int 2013; 2013: 318464. doi: https://doi.org/10.1155/2013/318464.

    PubMed  PubMed Central  Google Scholar 

  29. Gupta A, Dekaney CM, Bazer FW, Madrigal MM, Jaeger LA. Beta transforming growth factors (TGFbeta) at the porcine conceptus-maternal interface. Part II: uterine TGFbeta bioactivity and expression of immunoreactive TGFbetas (TGFbeta1, TGFbeta2, and TGFbeta3) and their receptors (type I and type II). Biol Reprod 1998; 59(4): 911–7.

    Article  CAS  PubMed  Google Scholar 

  30. Blitek A, Morawska-Pucinska E, Szymanska M, Kiewisz J, Waclawik A. Effect of conceptus on transforming growth factor (TGF) beta1 mRNA expression and protein concentration in the porcine endometrium-in vivo and in vitro studies. J Reprod Dev 2013; 59(6): 512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta A, Bazer FW, Jaeger LA. Differential expression of beta transforming growth factors (TGF beta 1, TGF beta 2 and TGF beta 3) and their receptors (type I and type II) in peri-implantation porcine conceptuses. Biol Reprod 1996; 55(4): 796–802.

    Article  CAS  PubMed  Google Scholar 

  32. Fornari MC, Sarto A, Berardi VE, et al. Effect of ovaric hyperstimulation on blood lymphocyte subpopulations, cytokines, leptin and nitrite among patients with unexplained infertility. Am J Reprod Immunol 2002; 48(6): 394–403.

    Article  CAS  PubMed  Google Scholar 

  33. Fried G, Wramsby H. Increase in transforming growth factor beta1 in ovarian follicular fluid following ovarian stimulation and in-vitro fertilization correlates to pregnancy. Hum Reprod 1998; 13(3): 656–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seval Ozgu-Erdinc.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, A., Engin-Ustun, Y., Tokmak, A. et al. Serum levels of transforming growth factor β1 and C-reactive protein as possible markers of intra uterine insemination outcome. Eur Cytokine Netw 29, 121–126 (2018). https://doi.org/10.1684/ecn.2018.0418

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2018.0418

Key words

Navigation