Skip to main content
Log in

The Notch repressor complex in Drosophila: in vivo analysis of Hairless mutants using overexpression experiments

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

During development of higher animals, the Notch signalling pathway governs cell type specification by mediating appropriate gene expression responses. In the absence of signalling, Notch target genes are silenced by repressor complexes. In the model organism Drosophila melanogaster, the repressor complex includes the transcription factor Suppressor of Hairless [Su(H)] and Hairless (H) plus general co-repressors. Recent crystal structure analysis of the Drosophila Notch repressor revealed details of the Su(H)-H complex. They were confirmed by mutational analyses of either protein; however, only Su(H) mutants have been further studied in vivo. Here, we analyse three H variants predicted to affect Su(H) binding. To this end, amino acid replacements Phenylalanine 237, Leucines 245 and 247, as well as Tryptophan 258 to Alanine were introduced into the H protein. A cell-based reporter assay indicates substantial loss of Su(H) binding to the respective mutant proteins HFA, HLLAA and HWA. For in vivo analysis, UAS-lines HFA, HLLAA and HWA were generated to allow spatially restricted overexpression. In these assays, all three mutants resembled the HLD control, shown before to lack Su(H) binding, indicating a strong reduction of H activity. For example, the H variants were impaired in wing margin formation, but unexpectedly induced ectopic wing venation. Concurrent overexpression with Su(H), however, suggests that all mutant H protein isoforms are still able to bind Su(H) in vivo. We conclude that a weakening of the cohesion in the H-Su(H) repressor complex is sufficient for disrupting its in vivo functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artavanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signaling. Science 268:225–232

    Article  CAS  PubMed  Google Scholar 

  • Barolo S, Stone T, Bang AG, Posakony JW (2002) Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCTBP to Suppressor of Hairless. Genes Dev 16:1964–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific PhiC31 integrases. Proc Natl Acad Sci U S A 104:3312–3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair SS (2007) Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu Rev Cell Dev Biol 23:293–319

    Article  CAS  PubMed  Google Scholar 

  • Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66:1631–1646

    Article  CAS  PubMed  Google Scholar 

  • Borggrefe T, Oswald F (2016) Setting the stage for Notch: the Drosophila Su(H)-Hairless repressor complex. PLoS Biol 14(7):e1002524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Biol 7:678–689

    Article  CAS  Google Scholar 

  • Bray SJ, Gomez-Lamarca M (2016) Notch after cleavage. Curr Opin Cell Biol 51:103–109

    Article  CAS  Google Scholar 

  • Bray S, Musisi H, Bienz M (2005) Bre1 is required for Notch signaling and histone modification. Dev Cell 8:279–286

    Article  CAS  PubMed  Google Scholar 

  • Bunch TA, Grinblat Y, Goldstein LS (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res 16:1043–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell S, Inamdar M, Rodrigues V, Raghavan V, Palazzolo M, Chovnick A (1992) The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila. Genes Dev 6:367–379

    Article  CAS  PubMed  Google Scholar 

  • Collins KJ, Yuan Z, Kovall RA (2014) Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of Notch signaling. Structure 22:70–81

    Article  CAS  PubMed  Google Scholar 

  • de Celis JF (1998) Positioning and differentiation of veins in the Drosophila wing. Int J Dev Biol 42:335–344

    PubMed  Google Scholar 

  • de Celis JF, Bray SJ (1997) Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124:3241–3251

    PubMed  Google Scholar 

  • de Celis JF, Garcia-Bellido A (1994) Roles of the Notch gene in Drosophila wing morphogenesis. Mech Dev 46:109–122

    Article  PubMed  Google Scholar 

  • Djiane A, Krejci A, Bernard F, Fexova S, Millen K, Bray SJ (2013) Dissecting the mechanisms of Notch induced hyperplasia. EMBO J 32:60–71

    Article  CAS  PubMed  Google Scholar 

  • Furriols M, Bray S (2000) Dissecting the mechanisms of Suppressor of Hairless function. Dev Biol 227:520–532

    Article  CAS  PubMed  Google Scholar 

  • Ghysen A, Dambly-Chaudière C, Jan LY, Jan YN (1993) Cell interactions and gene interactions in peripheral neurogenesis. Genes Dev 7:723–733

    Article  CAS  PubMed  Google Scholar 

  • Go MJ, Eastman DS, Artavanis-Tsakonas S (1998) Cell proliferation control by Notch signaling in Drosophila development. Development 125:2031–2040

    CAS  PubMed  Google Scholar 

  • Gyuris J, Golemis E, Chertkov H, Brent R (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with cdk2. Cell 75:791–803

    Article  CAS  PubMed  Google Scholar 

  • Hartenstein V, Posakony JA (1990) A dual function of the Notch gene in Drosophila sensillum development. Dev Biol 142:13–30

    Article  CAS  PubMed  Google Scholar 

  • Hasson P, Paroush Z (2006) Crosstalk between the EGFR and other signalling pathways at the level of the global transcriptional corepressor Groucho/TLE. Br J Cancer 94:771–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasson P, Egoz N, Winkler C, Volohonsky G, Jia S, Dinur T, Volk T, Courey AJ, Paroush Z (2005) EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nat Genet 37:101–105

    Article  CAS  PubMed  Google Scholar 

  • Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120:2121–2129

    CAS  PubMed  Google Scholar 

  • Jiménez G, Paroush Z, Ish-Horowicz D (1997) Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev 11:3072–3082

    Article  PubMed  PubMed Central  Google Scholar 

  • Johannes B, Preiss A (2002) Wing vein formation in Drosophila melanogaster Hairless is involved in the cross-talk between Notch and EGF signaling pathways. Mech Dev 115:3–14

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Irvine KD, Caroll SB (1995) Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell 82:795–802

    Article  CAS  PubMed  Google Scholar 

  • Klein T, Martinez Arias A (1998) Differential spatial and temporal interaction between Notch, wingless, and vestigial specify proximal and distal pattern elements of the wing in Drosophila. Dev Biol 194:196–212

    Article  CAS  PubMed  Google Scholar 

  • Koelzer S, Klein T (2003) A Notch-independent function of Suppressor of Hairless during the development of the bristle sensory organ precursor cell of Drosophila. Development 130:1973–1988

    Article  CAS  PubMed  Google Scholar 

  • Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovall RA, Blacklow SC (2010) Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr Top Dev Biol 92:31–71

    Article  CAS  PubMed  Google Scholar 

  • Kurth P, Preiss A, Kovall RA, Maier D (2011) Molecular analysis of the Notch repressor-complex in Drosophila: characterization of potential Hairless binding sites on Suppressor of Hairless. PLoS One 6(11):e277986

    Article  CAS  Google Scholar 

  • Lecuit T, Brook WJ, Ng M, Calleja M, Sun H, Cohen SM (1996) Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381:387–393

    Article  CAS  PubMed  Google Scholar 

  • Lindsley D, Zimm GG (1992) The genome of Drosophila melanogaster. Academic Press, San Diego

    Google Scholar 

  • Maier D (2006) Hairless, the ignored antagonist of the Notch signalling pathway. Hereditas 143:212–221

    Article  PubMed  Google Scholar 

  • Maier D, Marquart J, Thompson-Fontaine A, Beck I, Wurmbach E, Preiss A (1997) In vivo structure-function analysis of Drosophila Hairless. Mech Dev 67:97–106

    Article  CAS  PubMed  Google Scholar 

  • Maier D, Nagel AC, Preiss A (2002) Two isoforms of the Notch antagonist Hairless are produced by differential translation initiation. Proc Natl Acad Sci U S A 99:15480–15485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier D, Chen AX, Preiss A, Ketelhut M (2008) The tiny Hairless protein from Apis mellifera: a potent antagonist of Notch signaling in Drosophila melanogaster. BMC Evol Biol 8:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier D, Kurth P, Schulz A, Russel A, Yuan Z, Gruber K et al (2011) Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster. Mol Cell Biol 22:3242–3252

    Article  CAS  Google Scholar 

  • Möckli N, Auerbach D (2004) Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system. Biotechniques 36(5):872–876

    Article  PubMed  Google Scholar 

  • Morel V, Lecourtois M, Massiani O, Maier D, Preiss A, Schweisguth F (2001) Transcriptional repression by Suppressor of Hairless involves the binding of a Hairless-dCtBP complex in Drosophila. Curr Biol 11(10):789–792

    Article  CAS  PubMed  Google Scholar 

  • Nagel AC, Maier D, Preiss A (2000) Su(H)-independent activity of Hairless during mechano-sensory organ formation in Drosophila. Mech Dev 94:3–12

    Article  CAS  PubMed  Google Scholar 

  • Nagel AC, Krejci A, Tenin G, Bravo-Patino A, Bray S, Maier D, Preiss A (2005) Hairless-mediated repression of Notch target genes requires the combined activity of Groucho and CtBP co-repressors. Mol Cell Biol 25:10433–10441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praxenthaler H, Smylla TK, Nagel AC, Preiss A, Maier D (2015) Generation of new Hairless alleles by genomic engineering at the Hairless locus in Drosophila melanogaster. PLoS ONE 10(10):e0140007

  • Praxenthaler H, Nagel AC, Schulz A, Zimmermann M, Meier M, Schmid H, Preiss A, Maier D (2017) Hairless-binding deficient Suppressor of Hairless alleles reveal Su(H) protein levels are dependent on complex formation with Hairless. PLoS Genet 13(5):e1006774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Protzer CE, Wech I, Nagel AC (2008) Hairless induces cell death by downregulation of EGFR signalling activity. J Cell Sci 121:3167–3176

    Article  CAS  PubMed  Google Scholar 

  • Rooke JE, Xu T (1998) Positive and negative signals between interacting cells for establishing neural fate. BioEssays 20:209–214

    Article  CAS  PubMed  Google Scholar 

  • Schweisguth F, Gho M, Lecourtois M (1996) Control of cell fate choices by lateral signaling in the adult peripheral nervous system of Drosophila melanogaster. Dev Genet 18:28–39

    Article  CAS  PubMed  Google Scholar 

  • Tabaja N, Yuan Z, Oswald F, Kovall RA (2017) Structure-function analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes. J Biol Chem 292:10549–10563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanderWielen BD, Yuan Z, Friedmann DR, Kovall RA (2011) Transcriptional repression in the Notch pathway: thermodynamic characterization of CSL-MINT (Msx2-interacting nuclear target protein) complexes. J Biol Chem 286:14892–14902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Praxenthaler H, Tabaj N, Torella R, Preiss A, Maier D et al (2016) Structure and function of the Su(H)-Hairless repressor complex, the major antagonist of Notch signalling in Drosophila melanogaster. PLoS Biol 14(7):e1002509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehender A, Bayer M, Bauer M, Zeis B, Preiss A, Maier D (2017) Conservation of the Notch antagonist Hairless in arthropods: functional analysis of the crustacean Daphnia pulex Hairless gene. Dev Genes Evol 227(5):339–353

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M, Kugler SJ, Schulz A, Nagel AC (2015) Loss of putzig activity results in apoptosis during wing imaginal development in Drosophila. PLoS One 10(4):e0124652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Rafael Saup for establishing the NTCTLL245/247AA replacement mutation, to Adriana Schulz, Helena Mastel and Thomas Stößer for technical assistance and to Anja C. Nagel for critical reading of the manuscript, manifold input and discussions.

Funding

This work was supported by grants from the German Science Foundation to DM (MA 1328/10-1 and MA 1328/11-1). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.M. and A.P. conceived and designed the experiments; T.K.S., M.M., and D.M. conducted the experiments, T.K.S., M.M., A.P. and D.M. collected and analysed the data and performed the statistical analysis; A.P. wrote the manuscript; and all authors have approved the final manuscript.

Corresponding author

Correspondence to Dieter Maier.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Siegfried Roth

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smylla, T.K., Meier, M., Preiss, A. et al. The Notch repressor complex in Drosophila: in vivo analysis of Hairless mutants using overexpression experiments. Dev Genes Evol 229, 13–24 (2019). https://doi.org/10.1007/s00427-018-00624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-018-00624-2

Keywords

Navigation