Skip to main content
Log in

Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The in situ non invasive methods have experienced a significant development in the last decade because they meet specific needs of analytical chemistry in the field of cultural heritage where  artworks are rarely moved from their locations, sampling is rarely permitted, and analytes are a wide range of inorganic, organic and organometallic substances in complex and precious matrices. MOLAB, a unique collection of integrated mobile instruments, has greatly contributed to demonstrate that it is now possible to obtain satisfactory results in the study of a variety of heritage objects without sampling or moving them to a laboratory. The current chapter describes an account of these results with particular attention to ancient, modern, and contemporary paintings. Several non-invasive methods by portable equipment, including XRF, mid- and near-FTIR, UV–Vis and Raman spectroscopy, as well as XRD, are discussed in detail along with their impact on our understanding of painting materials and execution techniques. Examples of successful applications are given, both for point analyses and hyperspectral imaging approaches. Lines for future perspectives are finally drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brunetti BG, Clark AJ, Sgamellotti A (eds) (2010) Advanced techniques in art conservation. Acc Chem Res 43(6):693-4

  2. Sgamellotti A, Brunetti BG, Miliani C (eds) (2014) Science and art. The painted surface. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Clark RJH (1995) Raman microscopy: application to the identification of pigments on medieval manuscripts. Chem Soc Rev 24:187–196

    Article  CAS  Google Scholar 

  4. Burgio L, Ciomartan DA, Clark RJH (1997) Pigment identification on medieval manuscripts, paintings and other artefacts by Raman microscopy: applications to the study of three German manuscripts. J Mol Struct 405:1–11

    Article  CAS  Google Scholar 

  5. MacArthur JD, Del Carmine P, Lucarelli F, Mandò PA (1990) Identification of pigments in some colours on miniatures from the medieval age and early Renaissance. Nucl Instr Meth B 45:315–321

    Article  Google Scholar 

  6. Wagner W, Neelmeijer C (1995) External proton beam analysis of layered objects. Fresenius J Anal Chem 353:297–302

    Article  CAS  Google Scholar 

  7. Brissaud I, Guilló A, Lagarde G, Midya P, Calligaro T, Salomon J (1999) Determination of the sequence and thicknesses of multilayers in an easel painting. Nucl Instr Meth B 155:447–452

    Article  CAS  Google Scholar 

  8. Janssens K, Vittiglio G, Deraedt I, Aerts A, Vekemans B et al (2000) Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrom 29:73–91

    Article  CAS  Google Scholar 

  9. Eu-ARTECH, Access, research and technology for the conservation of the European Cultural Heritage, 6th FP RII3-CT-2004-506171 (2004–2009). www.euartech.org

  10. CHARISMA, Cultural heritage advanced research infrastructures: synergy for a multidisciplinary approach to conservation, 7th FP GA n. 228330 (2009–2014). www.charismaproject.eu

  11. IPERION CH, Integrated platform for the European Research Infrastructure on Cultural Heritage, H2020 RIA n. 654028 (2014–2015). www.iperionch.eu

  12. Miliani C, Rosi F, Brunetti BG, Sgamellotti A (2010) In situ non-invasive study of artworks: The MOLAB multi-technique approach. Acc Chem Res 43:728–738

    Article  CAS  Google Scholar 

  13. Cesareo R, Frazzoli FV, Mancini C, Sciuti S, Marabelli M, Mora P, Rotondi P, Urbani G (1972) Non-destructive analysis of chemical elements in paintings and enamels. Archaeometry 14:65–78

    Article  CAS  Google Scholar 

  14. Hall ET, Schweizer F, Toller PA (1973) X-ray fluorescence analysis of museum objects: a new instrument. Archaeometry 15:53–78

    Article  CAS  Google Scholar 

  15. Moioli P, Seccaroni C (2000) Analysis of art objects using a portable X-ray fluorescence spectrometer. X-Ray Spectrom 29:48–52

    Article  CAS  Google Scholar 

  16. Brunetti BG, Seccaroni C, Sgamellotti A (eds) (2004) The painting technique of Pietro Vannucci, called il Perugino. Nardini, Firenze

    Google Scholar 

  17. Roy A, Spring M (eds) (2007) Raphael’s painting technique: working practice before Rome. Nardini, Firenze

    Google Scholar 

  18. Menu M, Ravaud E (eds) (2009) Andrea Mantegna painting technique. Special issue of Techne’. C2RMF, Paris

    Google Scholar 

  19. de Viguerie L, Solé VA, Walter Ph (2009) Multilayers quantitative X-ray fluorescence analysis applied to easel paintings. Anal Bioanal Chem 395:2015–2020

    Article  CAS  Google Scholar 

  20. Bonizzoni L, Galli A, Poldi G, Milazzo M (2007) In situ non-invasive EDXRF analysis to reconstruct stratigraphy and thickness of Renaissance pictorial multilayers. X-Ray Spectrom 36:55–61

    Article  CAS  Google Scholar 

  21. del Viguerie L, Walter Ph, Laval E, Mottin B, Solé VA (2010) Revealing the sfumato technique of Leonardo da Vinci by X-Ray fluorescence spectroscopy. Angew Chem Int Ed 49:6125–6128

    Article  CAS  Google Scholar 

  22. Miliani C, Rosi F, Borgia I, Benedetti P, Brunetti BG, Sgamellotti A (2007) Fiber-optic Fourier Transform mid-infrared reflectance spectroscopy: A suitable technique for in situ studies of mural paintings. Appl Spectrosc 61:293–299

    Article  CAS  Google Scholar 

  23. Miliani C, Rosi F, Burnstock A, Brunetti BG, Sgamellotti A (2007) Non-invasive in situ investigations versus micro-sampling: a comparative study on a Renoir’s painting. Appl Phys A 89:849–856

    Article  CAS  Google Scholar 

  24. Rosi F, Daveri A, Miliani C, Verri G, Benedetti P, Piqué F, Brunetti BG, Sgamellotti A (2009) Non-invasive identification of organic materials in wall paintings by fiber optic reflectance infrared spectroscopy: a statistical multivariate approach. Anal Bioanal Chem 395:2097–2106

    Article  CAS  Google Scholar 

  25. Rosi F, Burnstock A, Van den Berg KJ, Miliani C, Brunetti BG, Sgamellotti A (2009) A non-invasive XRF study supported by multivariate statistical analysis and reflectance FTIR to assess the composition of modern painting materials, Spectrochim. Acta A 71:1655–1662

    Article  CAS  Google Scholar 

  26. Kahrim K, Daveri A, Rocchi P, de Cesare G, Cartechini L, Miliani C, Brunetti BG, Sgamellotti A (2009) The application of in situ mid-FTIR fibre-optic reflectance spectroscopy and GC–MS analysis to monitor and evaluate painting cleaning. Spectrochim Acta A 74:1182–1188

    Article  CAS  Google Scholar 

  27. Rosi F, Daveri A, Doherty B, Nazzareni S, Brunetti BG, Sgamellotti A, Miliani C (2010) On the use of overtone and combination bands for the analysis of the CaSO4–H2O system by mid-infrared reflection spectroscopy. Appl Spectrosc 64:956–963

    Article  CAS  Google Scholar 

  28. Miliani C, Rosi F, Daveri A, Brunetti BG (2012) Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl Phys A 106:295–307

    Article  CAS  Google Scholar 

  29. Buti D, Rosi F, Brunetti BG, Miliani C (2013) In-situ identification of copper-based green pigments. Anal Bioanal Chem 405:2699–2711

    Article  CAS  Google Scholar 

  30. Doherty B, Daveri A, Clementi C, Romani A, Bioletti S, Brunetti BG, Sgamellotti A, Miliani C (2013) The Book of Kells: A non-invasive MOLAB investigation by complementary spectroscopic techniques. Spectrochim Acta A 115:330–336

    Article  CAS  Google Scholar 

  31. Daveri A, Doherty B, Moretti P, Grazia C, Romani A, Fiorin E, Brunetti BG, Vagnini M (2015) An uncovered XIII century icon: Particular use of organic pigments and gilding techniques highlighted by analytical methods. Spectrochim Acta A 135:398–404

    Article  CAS  Google Scholar 

  32. Buti D, Domenici D, Miliani C, García Sáiz C, Gómez Espinoza T, Jímenez Villalba F, Verde Casanova A, Sabía de la Mata A, Romani A, Presciutti F, Doherty B, Brunetti BG, Sgamellotti A (2014) Non-invasive investigation of a pre-Hispanic Maya screenfold book: The Madrid Codex. J Archaeol Sci 42:166–178

    Article  CAS  Google Scholar 

  33. Fabbri M, Picollo M, Porcinai S, Bacci M (2001) Mid-infrared fiber-optics reflectance spectroscopy: A non-invasive technique for remote analysis of painted layers. Part I: Technical setup. Appl Spectrosc 55:420–427

    Article  CAS  Google Scholar 

  34. Fabbri M, Picollo M, Porcinai S, Bacci M (2001) Mid-infrared fiber-optics reflectance spectroscopy: A non-invasive technique for remote analysis of painted layers. Part II: Statistical analysis of spectra. Appl Spectrosc 55:428–433

    Article  CAS  Google Scholar 

  35. Griffiths P, De Haseth JA (2007) Fourier transform infrared spectrometry, 2nd edn. Wiley, New York

    Book  Google Scholar 

  36. Miliani C, Daveri A, Brunetti BG, Sgamellotti A (2008) CO2 entrapment in natural ultramarine blue. Chem Phys Lett 446:148–151

    Article  CAS  Google Scholar 

  37. Vagnini M, Miliani C, Cartechini L, Rocchi P, Brunetti BG, Sgamellotti A (2009) FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Anal Bioanal Chem 395:2107–2118

    Article  CAS  Google Scholar 

  38. Jurado Lopez A, Luque De Castro MD (2004) Use of near-infrared spectroscopy in a study of binding media in paintings. Anal Bioanal Chem 380:706–771

    Article  CAS  Google Scholar 

  39. Wendlandt WW, Hecht HG (1966) Reflectance spectroscopy. Interscience Publishers, New York

    Google Scholar 

  40. Bacci M, Baldini F, Carlá R, Linari R, Picollo M, Radicati B (1993) Colour analysis of the Brancacci Chapel frescoes. Appl Spectrosc 47:399–402

    Article  CAS  Google Scholar 

  41. Bacci M, Casini A, Cucci C, Picollo M, Radicati B, Vervat M (2003) Non-invasive spectroscopic measurements on the “Il ritratto della figliastra” by Giovanni Fattori: identification of pigments and colorimetric analysis. J Cult Herit 4:329–336

    Article  Google Scholar 

  42. Bacci M, Picollo M, Trumpy G, Tsukada M, Kunzelman D (2007) Non-invasive identification of white pigments on 20th-century oil paintings by using fiber optic reflectance spectroscopy. J Am Inst Conserv 46:27–37

    Article  Google Scholar 

  43. Bruni S, Caglio S, Guglielmi V, Poldi G (2008) The joined use of non-invasive spectroscopic analyses – FTIR, Raman, visible reflectance spectrometry and EDXRF – to study drawings and illuminated manuscripts. Appl Phys A 92:103–108

    Article  CAS  Google Scholar 

  44. Ricciardi P, Delaney J, Facini M, Glinsman L (2013) Use of imaging spectroscopy and in situ analytical methods for the characterization of the materials and techniques of 15th century illuminated manuscripts. J Am Inst Conserv 52:13–29

    Article  Google Scholar 

  45. Aceto M, Agostino A, Fenoglio G, Idone A, Gulmini M, Picollo M, Ricciardi P, Delaney JK (2014) Characterisation of colourants on illuminated manuscripts by portable fibre optic UV–visible-NIR reflectance spectrophotometry. Anal Methods 6:1488–1500

    Article  CAS  Google Scholar 

  46. Romani A, Clementi C, Miliani C, Favaro G (2010) Fluorescence Spectroscopy: A Powerful Technique for the Noninvasive Characterization of Artwork. Acc Chem Res 43:837–846

    Article  CAS  Google Scholar 

  47. Clementi C, Doherty B, Gentili P, Miliani C, Romani A, Brunetti BG, Sgamellotti A (2008) Vibrational and electronic properties of painting lakes. Appl Phys A 92:25–33

    Article  CAS  Google Scholar 

  48. Clementi C, Miliani C, Romani A, Favaro G (2006) In situ fluorimetry: A powerful noninvasive diagnostic technique for natural dyes used in artefacts Part I. Spectral characterization of orcein in solution, on silk and wool laboratory-standards and a fragment of Renaissance tapestry. Spectrochim Acta, Part A 64:906–912

    Article  CAS  Google Scholar 

  49. Miliani C, Romani A, Favaro G (1998) Spectrophotometric and fluorimetric study of some anthraquinoid and indigoid colorants used in artistic paintings. Spectrochim Acta, Part A 54:581–588

    Article  Google Scholar 

  50. Buti D (2009) Ph.D. Thesis, University of Firenze

  51. Clementi C, Rosi F, Romani A, Vivani R, Brunetti BG, Miliani C (2012) Photoluminescence properties of zinc oxide in paints: A study of the effect of self-absorption and passivation. Appl Spectrosc 66:1233–1241

    Article  CAS  Google Scholar 

  52. Rosi F, Grazia C, Gabrieli F, Romani A, Paolantoni M, Vivani R, Brunetti BG, Colomban Ph, Miliani C (2016) UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd1−x Zn x S solid solutions in cadmium yellow pigments. Microchem J 124:856–867

  53. Grazia C, Rosi F, Gabrieli F, Romani A, Paolantoni M, Vivani R, Brunetti BG, Colomban Ph, Miliani C (2016) A multitechnique approach for investigating the composition of ternary CdS1−x Se x solid solutions employed as artists’ pigments. Microchem J 125:279–289

  54. Accorsi G, Verri G, Bolognesi M, Armaroli N, Clementi C, Miliani C, Romani A (2009) The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chem Commun 3392–3394

  55. Clementi C, Miliani C, Verri G, Sotiropoulou S, Romani A, Brunetti BG, Sgamellotti A (2009) Application of the Kubelka-Munk correction for self-absorption of fluorescence emission in carmine lake paint layers. Appl Spectrosc 63:1323–1330

    Article  CAS  Google Scholar 

  56. Simonot L, Thoury M, Delaney JK (2011) Extension of the Kubelka-Munk theory for fluorescent turbid media to a non-opaque layer on a background. J Opt Soc Am 28:1349–1357

    Article  Google Scholar 

  57. Romani A, Clementi C, Miliani C, Brunetti BG, Sgamellotti A, Favaro G (2008) Portable equipment for luminescence lifetime measurements on surfaces. Appl Spectrosc 62:1395–1399

    Article  CAS  Google Scholar 

  58. Nevin A, Cesaratto A, Bellei S, D’Andrea C, Toniolo L, Valentini G, Comelli D (2014) Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation. Sensors 14:6338–6355 and references therein

    Article  CAS  Google Scholar 

  59. Romani A, Grazia C, Anselmi C, Miliani C, Brunetti BG (2011) New portable instrument for combined reflectance, time-resolved and steady-state luminescence measurements on works of art. In: Pezzati L, Salimbeni R (eds) SPIE Proceedings Vol. 8084: O3A: Optics for Arts, Architecture, and Archaeology III. doi:10.1117/12.889529

  60. Colomban Ph (2012) The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J Raman Spectrosc 43:1529–1535

    Article  CAS  Google Scholar 

  61. Monico L, Janssens K, Hendriks E, Brunetti BG, Miliani C (2014) Raman study of different crystalline forms of PbCrO4and PbCr1-xSxO4 solid solutions for the non-invasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. J Raman Spectrosc 45:1034–1045

    Article  CAS  Google Scholar 

  62. Nakai I, Abe Y (2012) Portable X-ray powder diffractometer for the analysis of art and archaeological materials. Appl Phys A 106:279–293

    Article  CAS  Google Scholar 

  63. Gatto Rotondo G, Romano FP, Pappalardo G, Pappalardo L, Rizzo F (2010) Nondestructive characterization of fifty various species of pigments of archaeological and artistic interest by using the portable X-ray diffraction system of the LANDIS laboratory of Catania (Italy). Microchem J 96:252–258

    Article  CAS  Google Scholar 

  64. Romano FP, Pappalardo L, Masini N, Pappalardo G, Rizzo F (2011) The compositional and mineralogical analysis of fired pigments in Nasca pottery from Cahuachi (Peru’) by the combined use of the portable PIXE-alpha and portable XRD techniques. Microchem J 99:449–453

    Article  CAS  Google Scholar 

  65. Chiari G (2008) Saving art in situ. Nature 453:159

    Article  CAS  Google Scholar 

  66. Sarrazin P, Chiari G, Gailhanou M (2008) A portable non-invasive XRF/XRD instrument for the study of art objects. Adv X-Ray Anal 52:175–186

    Google Scholar 

  67. Gianoncelli A, Castaing J, Ortega L, Dooryhée E, Salomon J, Walter Ph, Hodeau JL, Bordet P (2008) X-Ray Spectrom 37:418–423

    Article  CAS  Google Scholar 

  68. Duran A, Perez-Rodriguez JL, Espejo T, Franquelo ML, Castaing J, Walter Ph (2009) Anal Bioanal Chem 395:1997–2004

    Article  CAS  Google Scholar 

  69. Pages-Camagna S, Laval E, Vigears D, Duran A (2010) Non-destructive and in situ analysis of Egyptian wall paintings by X-ray diffraction and X-ray fluorescence portable systems. Appl Phys A 100:671–675

    Article  CAS  Google Scholar 

  70. Chiari G (2010) Analyzing stratigraphy with a dual XRD/XRF instrument. Denver X-ray conference abstracts. http://www.dxcicdd.com/10/DXC_list_abstract.asp

  71. Uda M, Ishizaki A, Satoh R, Okada K, Nakajima Y, Yamashita D, Ohashi K, Sakuraba Y, Shimono A, Kojima D (2005) Portable X-ray diffractometer equipped with XRF for archaeometry. Nucl Instr Meth B 239:77–84

    Article  CAS  Google Scholar 

  72. Mendoza Cuevas A, Perez Gravie H (2011) Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry. Nucl Instrum Methods A 633:72–78

    Article  CAS  Google Scholar 

  73. Mendoza Cuevas A, Bernardini F, Gianoncelli A, Tuniz C (2015) Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrom 44:105–115

    Article  CAS  Google Scholar 

  74. Bracci S, Falletti F, Matteini M, Scopigno R (eds) (2004) Exploring David. Diagnostic tests and state of conservation. Giunti, Firenze

    Google Scholar 

  75. Monico L, Janssens K, Miliani C, Brunetti BG, Vagnini M et al (2013) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 3. Synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment. Anal Chem 85:851–859

    Article  CAS  Google Scholar 

  76. Monico L, Janssens K, Hendricks E, Vanmeert F, Van der Schnickt G, Cotte M, Falkemberg G, Brunetti BG, Miliani C (2015) Evidence for degradation of the chrome yellows in Van Gogh Sunflowers: a study by non-invasive methods and synchrotron radiation-based X-ray techniques. Angew Chem Int Ed 54:13923–13927

  77. Casadio F, Miliani C, Rosi F, Romani A, Anselmi C, Brunetti BG, Sgamellotti A, Andral JL, Gautier G (2013) Scientific investigations on an important corpus of Picasso paintings in Antibes: New insights into technique, conditions and chronological sequence. J Am Inst Conserv 52:184–204

    Article  Google Scholar 

  78. Rosi F, Miliani C, Clementi C, Kahrim K, Presciutti F, Vagnini M, Manuali V, Daveri A, Cartechini L, Brunetti BG, Sgamellotti A (2010) An integrated spectroscopic approach for the non-invasive study of modern art materials and techniques. Appl Phys A 100:613–624

    Article  CAS  Google Scholar 

  79. Van Bommel MR, Janssen H, Spronk R (eds) (2012) Inside out Victory Boogie Woogie. A material history of Mondrian’s masterpiece. Amsterdam University Press, Amsterdam

    Google Scholar 

  80. Van der Snickt G, Miliani C, Janssens K, Brunetti BG, Romani A, Rosi F, Walter Ph, Castaing J, De Nolf W, Klaassen L, Labarque I, Wittermann R (2011) Material analyses of “Christ with singing and music-making angels”, a late 15th C panel painting attributed to Hans Memling and assistants: Part I. non-invasive in situ investigations. J Anal At Spectrom 26:2216–2229

    Article  CAS  Google Scholar 

  81. Ricci C, Miliani C, Brunetti BG, Sgamellotti A (2006) Non-invasive identification of surface materials on marble artifacts with fiber optic mid-FTIR reflectance spectroscopy. Talanta 61:1221–1226

    Article  CAS  Google Scholar 

  82. Gettens RJ, Mrose ME (1954) Calcium Sulphate Minerals in the Grounds of Italian Paintings. Stud Conserv 1:174–189

    CAS  Google Scholar 

  83. Szmelter I, Cartechini L, Romani A, Pezzati L (2014) Multi-criterial studies of the masterpiece The Last Judgement, attributed to H. Memling, at the National Museum of Gdansk. In: Sgamellotti A, Brunetti BG, Miliani C (eds) Science and art. The painted surface. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  84. Hradil D, Grygar T, Hradilova J, Bezdicka P, Grunwaldova V, Fogas I, Miliani C (2007) Microanalytical identification of Pb-Sb-Sn yellow pigment in historical European paintings and its differentiation from lead tin and Naples yellows. J Cult Herit 8:377–383

    Article  Google Scholar 

  85. Rosi F, Manuali V, Miliani C, Brunetti BG, Sgamellotti A, Grygar T, Hradil D (2009) Raman scattering features of lead pyroantimonate compounds. Part I: XRD and Raman characterization of Pb2Sb2O7 doped with tin and zinc. J Raman Spectrosc 40:107–111

    Article  CAS  Google Scholar 

  86. Rosi F, Manuali V, Grygar T, Bezdicka P, Brunetti BG, Sgamellotti A, Burgio L, Seccaroni C, Miliani C (2011) Raman scattering features of lead pyroantimonate compounds: implication for the non-invasive identification of yellow pigments on ancient ceramics. Part II. In situ characterisation of Renaissance plates by portable micro-Raman and XRF studies. J Raman Spectrosc 42:407–414

    Article  CAS  Google Scholar 

  87. Cartechini L, Rosi F, Miliani C, D’Acapito F, Brunetti BG, Sgamellotti A (2011) Modified Naples yellow in Renaissance majolica: study of Pb–Sb–Zn and Pb–Sb–Fe ternary pyroantimonates by X-ray absorption spectroscopy. J Anal At Spectrom 26:2500–2507

    Article  CAS  Google Scholar 

  88. Fiedler I, Bayard MA (1986) Cadmium yellow orange and red. In: Feller RL (ed) Artist’s Pigments, a handbook of their history and characteristics, vol 1. Cambridge University Press, Cambridge, pp 65–108

    Google Scholar 

  89. Huckle WG, Swigert GF, Wiberley SE (1966) Cadmium Pigments. Structure and Composition. Ind Eng Chem Prod Res Dev 5:362–366

    Article  CAS  Google Scholar 

  90. Kirby J, Stonor K, Roy A, Burnstock A, Grout R, White R (2003) Seurat’s Painting Practice: Theory, Development and Technology. Natl Gallery Tech Bull 24:4–37

    Google Scholar 

  91. Van der Snickt G, Janssens K, Schalm O, Aibéo C, Kloust H, Alfeld M (2010) James Ensor’s pigment use: artistic and material evolution studied by means of portable X-ray fluorescence spectrometry. X-Ray Spectrom 39:103–111

    Article  CAS  Google Scholar 

  92. Hendriks E (2006) In: Hendriks E, Van Tilborgh L (eds) New Views on Van Gogh’s development in Antwerp and Paris: an integrated art historical and technical study of his paintings in the Van Gogh Museum. University of Amsterdam, Amsterdam, pp 149–150

    Google Scholar 

  93. Kühn H, Curran M (1986) Chrome yellow and other chromate pigments. In: Feller RL (ed) Artists’ pigments: a handbook of their history and characteristics, vol 1. Cambridge University Press, Cambridge, pp 187–200

    Google Scholar 

  94. Eastaugh N, Walsh V, Chaplin T, Siddall R (2004) The pigment compendium (CD-ROM). Elsevier, Amsterdam

    Google Scholar 

  95. Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Verbeeck J, Tian H, Tan H, Dik J, Radepont M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 1. Artificially aged model samples. Anal Chem 83:1214–1223 and references therein

    Article  CAS  Google Scholar 

  96. Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C, Dik J, Radepont M, Hendriks E, Geldof M, Cotte M (2011) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 2. Original paint layer samples. Anal Chem 83:1224–1231 and references therein

    Article  CAS  Google Scholar 

  97. Monico L, Janssens K, Miliani C, Van der Snickt G, Brunetti BG, Cestelli Guidi M, Radepont M, Cotte M (2013) Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. 4. Artificial aging of model samples of co-precipitates of lead chromate and lead sulfate. Anal Chem 85:860–867

    Article  CAS  Google Scholar 

  98. Monico L, Janssens K, Vanmeert F, Cotte M, Brunetti BG, Van der Snickt G, Leeuwestein M, Salvant Plisson J, Menu M, Miliani C (2014) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. Part 5. Effects of non-original surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints. Anal Chem 86:10804–10811

    Article  CAS  Google Scholar 

  99. Monico L, Janssens K, Cotte M, Romani A, Sorace L, Grazia C, Brunetti BG, Miliani C (2015) Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of the visible light. J Anal At Spectrosc 30:2024

    Article  CAS  Google Scholar 

  100. Herbst W, Hunger K (2004) Industrial organic pigments production, properties, applications. Wiley, New York

    Book  Google Scholar 

  101. Van Bommel MR, Vanden Berghe I, Wallert AM, Boitelle R, Wouters J (2007) High-performance liquid chromatography and non-destructive three-dimensional fluorescence analysis of early synthetic dyes. J Chromatogr A 1120:260–272

    Article  CAS  Google Scholar 

  102. Doherty B, Vagnini M, Dufourmantelle K, Sgamellotti A, Brunetti BG, Miliani C (2014) A vibrational spectroscopic and principal component analysis of triarylmethane dyes by comparative laboratory and portable instrumentation. Spectrochim Acta A 12:292–305

    Article  CAS  Google Scholar 

  103. Sherrer NC, Stephan Z, Francoise D, Annette F, Renate K (2009) Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim Acta A 73:505–524

    Article  CAS  Google Scholar 

  104. Vandenabele P, Moens L, Edwards HGM, Dams R (2000) Raman spectroscopic database of azo pigments and application to modern art studies. J Raman Spectrosc 31:509–517

    Article  Google Scholar 

  105. Doherty B, Brunetti BG, Sgamellotti A, Miliani C (2011) A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes. J Raman Spectrosc 42:1932–1938

    Article  CAS  Google Scholar 

  106. Doherty B, Presciutti F, Sgamellotti A, Brunetti BG, Miliani C (2014) Monitoring of optimized SERS active gel substrates for painting and paper substrates by unilateral NMR profilometry. J Raman Spectrosc 45:1153–1159

    Article  CAS  Google Scholar 

  107. Learner TJ (2004) Analysis of modern paints. Research in conservation. Getty Conservation Institute, Los Angeles

    Google Scholar 

  108. Cappitelli F, Learner T, Chiantore O (2002) An initial assessment of thermally assisted hydrolysis and methylation—gas chromatography/mass spectrometry for the identification of oils from dried paint films. J Anal Appl Pyrolysis 63:339–348

    Article  CAS  Google Scholar 

  109. Silva MF, Doménech-Carbó MT, Fuster-Lopéz L, Martín-Rey S, Mecklenburg MF (2009) Determination of the plasticizercontent in poly(vinyl acetate) paint medium by pyrolysis–silylation–gas chromatography–mass spectrometry. J Anal Appl Pyrolysis 85:487–491

    Article  CAS  Google Scholar 

  110. Peris-Vicente J, Baumer U, Stege H, Lutzenberger K, Gimeno Adelantado JV (2009) Characterization of commercial synthetic resins by Pyrolysis-Gas Chromatography/Mass Spectrometry: Application to modern art and conservation. Anal Chem 81:3180–3187

    Article  CAS  Google Scholar 

  111. Rosi F, Daveri A, Moretti P, Brunetti BG, Miliani C (2016) Interpretation of mid and near-infrared reflection properties of synthetic polymer paints for the non-invasive assessment of binding media in twentieth-century pictorial artworks. Microchem J 124:898–908

  112. Ploeger R, Chiantore O, Scalarone D, Poli T (2011) Mid-infrared fiber-optic reflection spectroscopy analysis of artists’ alkyd paints on different supports. Appl Spectrosc A 65:429–435

    Article  CAS  Google Scholar 

  113. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  114. Alfeld M, Janssens K, Dik J, de Nolf W, van der Snickt G (2011) Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings. J Anal At Spectrom 26:899–909

    Article  CAS  Google Scholar 

  115. Alfeld M, Pedroso JV, Hommes MV, van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K (2013) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom 28:760–776

    Article  CAS  Google Scholar 

  116. Janssens K, Dik J, Cotte M, Susini J (2010) Photon-Based Techniques for Nondestructive Subsurface Analysis of Painted Cultural Heritage Artifacts. Acc Chem Res 43:814–825

    Article  CAS  Google Scholar 

  117. Legrand S, Vanmeert F, Van der Snickt G, Alfeld M, De Nolf W, Dik J, Janssens K (2014) Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography. Herit Sci 2:13 and references therein

    Article  Google Scholar 

  118. Alfeld M, van der Snickt G, Vanmeert F, Janssens K, Dik J, Appel K, van der Loeff L, Chavannes M, Meedendorp T, Hendriks E (2013) Scanning XRF investigation of a Flower Still Life and its underlying composition from the collection of the Kroller-Muller Museum. Appl Phys A 111:165–175

    Article  CAS  Google Scholar 

  119. Bull D, Krekeler A, Alfeld M, Dik J, Janssens K (2011) An intrusive portrait by Goya. Burlingt Mag 153:668–673

    Google Scholar 

  120. Alfeld M, De Nolf W, Cagno S, Appel K, Siddons DP, Kuczewski A, Janssens K, Dik J, Trentelman K, Walton M, Sartorius A (2013) Revealing hidden paint layers in oil paintings by means of scanning macro-XRF: a mock-up study based on Rembrandt’s “An old man in military costume”. J Anal At Spectrom 28:40–43

    Article  CAS  Google Scholar 

  121. Trentelman K, Janssens K, van der Snickt G, Szafran Y, Woollett AT, Dik J (2015) Rembrandt’s “An old man in military costume” the underlying image re-examined. Appl Phys A. doi:10.1007/s00339-015-9426-3

    Google Scholar 

  122. Delaney JK, Zeibel JG, Thoury M, Littleton R, Palmer M, Morales KM, de la Rie ER, Hoenigswald A (2010) Visible and Infrared imaging spectroscopy of Picasso’s Harlequin musician: mapping and identification of artist materials in situ. Appl Spectrosc 64:584–594

    Article  CAS  Google Scholar 

  123. Thoury M, Delaney JK, de la Rie ER, Palmer M, Morales K, Krueger J (2011) Near-infrared luminescence of cadmium pigments: in situ identification and mapping in paintings. Appl Spectrosc 65:939–951

    Article  CAS  Google Scholar 

  124. Ricciardi P, Delaney JK, Facini M, Zeibel JG, Picollo M, Lomax S, Loew M (2012) Near infrared reflectance imaging spectroscopy to map paint binders in situ on illuminated manuscripts. Angew Chem Int Ed 51:5607–5610

    Article  CAS  Google Scholar 

  125. Dooley KA, Lomax S, Zeibel JG, Miliani C, Ricciardi P, Hoenigswald A, Loew M, Delaney JK (2013) Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst 138:4838–4848

    Article  CAS  Google Scholar 

  126. Muir K, Langley A, Bezur A, Casadio F, Delaney JK, Gautier G (2012) Scientifically investigating Picasso’s suspected use of Ripolin house paints in still life, 1922, and the red armchair, 1931. J Am Inst Conserv 52:156–172

    Article  Google Scholar 

  127. Dooley KA, Conover DM, Deming Glinsman L, Delaney JK (2014) Complementary Standoff Chemical Imaging to Map and Identify Artist Materials in an Early Italian Renaissance Panel Painting. Angew Chem Int Ed 53:13775–13779

    Article  CAS  Google Scholar 

  128. Sabbah S, Harig R, Rusch P, Eichmann J, Keens A, Gerhard J (2012) Remote sensing of gases by hyperspectral imaging: system performance and measurements. Opt Eng 51:111717

    Article  Google Scholar 

  129. Rosi F, Miliani C, Braun R, Harig R, Sali D, Brunetti BG, Sgamellotti A (2013) Noninvasive analysis of paintings by mid-infrared hyperspectral imaging. Angew Chem Int Ed 52:5258–5261

    Article  CAS  Google Scholar 

  130. Legrand S, Alfeld M, Vanmeert F, De Nolf W, Janssens K (2014) Macroscopic reflection Fourier Transformed Mid-Infrared (MA-rFTIR) scanning, a new technique for in situ imaging of painted cultural artefacts. Analyst 139:2489–2498

    Article  CAS  Google Scholar 

  131. Doryhee F, Anne M, Bardies I, Hodeau JL, Martinetto P, Rondot S, Salomon J, Waughan GBM, Walter Ph (2005) Non-destructive synchrotron X-ray diffraction mapping of a Roman painting. Appl Phys A 81:663–667

    Article  CAS  Google Scholar 

  132. De Nolf W, Dik J, Van der Snickt G, Wallert A, Janssens K (2011) High energy X-ray powder diffraction for the imaging of (hidden) paintings. J Anal At Spectrom 26:910–916

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The MOLAB activities described in this work were possible thanks to the support of the European Commission, through the Research Infrastructure projects Eu-ARTECH (FP6-RII3-CT-2004-506171) and CHARISMA (FP7-GA n. 228330) and of the Laboratorio di Diagnostica di Spoleto. The authors are grateful to several researchers that contributed to MOLAB activities: C. Anselmi, D. Buti, L. Cartechini, A. Chieli, A. Daveri, F. Gabrieli, C. Grazia, P. Moretti, F. Presciutti, M. Vagnini. Kind permission from J. Wiley and Sons to reproduce Fig. 5 (from Ref. [61]) and rearrange Fig. 9 (from Ref. [129]) is acknowledged. Figures 2, 3 and 4 are reproduced from Ref. [80] and Fig. 8 from Ref. [125] with permission of the Royal Society of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Brunetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunetti, B., Miliani, C., Rosi, F. et al. Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience. Top Curr Chem (Z) 374, 10 (2016). https://doi.org/10.1007/s41061-015-0008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-015-0008-9

Keywords

Navigation