Skip to main content
Log in

Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Gas chromatography/mass spectrometry (GC/MS), after appropriate wet chemical sample pre-treatments or pyrolysis, is one of the most commonly adopted analytical techniques in the study of organic materials from cultural heritage objects. Organic materials in archaeological contexts, in classical art objects, or in modern and contemporary works of art may be the same or belong to the same classes, but can also vary considerably, often presenting different ageing pathways and chemical environments. This paper provides an overview of the literature published in the last 10 years on the research based on the use of GC/MS for the analysis of organic materials in artworks and archaeological objects. The latest progresses in advancing analytical approaches, characterising materials and understanding their degradation, and developing methods for monitoring their stability are discussed. Case studies from the literature are presented to examine how the choice of the working conditions and the analytical approaches is driven by the analytical and technical question to be answered, as well as the nature of the object from which the samples are collected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. This is based on the evaluation of the xyl/ara ratio: when this is higher than 1, contamination is hypothesised.

References

  1. Mills J, White R (2000) Organic chemistry of museum objects (2nd edn, vol 206), (Conservation and Museology). Routledge, New York

  2. Mills JS (1966) The gas chromatographic examination of paint media. Part I. Fatty acid composition and identification of dried oil films. Stud Conserv 11(2):92–107

    CAS  Google Scholar 

  3. White R (1984) The characterisation of proteinaceous binders in art objects. Natl Gallery Tech Bull 8:5–14

    Google Scholar 

  4. Schilling MR, Khanjian HP (1996) Gas chromatographic analysis of amino acids as ethyl chloroformate derivatives. II. Effects of pigments and accelerated aging on the identification of proteinaceous binding media. J Am Inst Conserv 35:123–144

    Article  Google Scholar 

  5. Bonaduce I, Andreotti A (2009) Py-GC/MS of organic paint binders. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 303–326

    Chapter  Google Scholar 

  6. Colombini MP et al (2010) Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Acc Chem Res 395:715–727

    Article  CAS  Google Scholar 

  7. Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7(12):4848–4876

    Article  Google Scholar 

  8. Peris-Vicente J et al (2009) Characterization of commercial synthetic resins by pyrolysis-gas chromatography/mass spectrometry: application to modern art and conservation. Anal Chem 81(8):3180–3187

    Article  CAS  Google Scholar 

  9. Learner T (2004) Analysis of modern paints. Getty Publication, Canada

    Google Scholar 

  10. Edwards HG, Vandenabeele P (2012) Analytical archaeometry: selected topic. RCS Publishing, London

    Book  Google Scholar 

  11. Andreotti A, et al (2008) Characterisation of natural organic materials in paintings by GC/MS analytical procedures, in New trends in analytical, environmental and cultural heritage chemistry. In: MP Colombini, L Tassi (eds) Transworld Research Network: Kerala, India. p 491

  12. Scalarone D, Chiantore O (2009) Py-GC/MS of natural and synthetic resins. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, p 327

    Chapter  Google Scholar 

  13. Serpico M, White R (2000) Ancient Egyptian materials and technology. In: Nicholson PT, Shaw I (eds) Oil, fat and wax. Cambridge University Press, pp 390–429

  14. Pollard AM, Heron C (1996) Archaeological chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  15. Evershed RP (2000) Modern analytical methods in art and archaeology. In: Ciliberto E, Spoto G (eds) Biomolecular analysis by organic mass spectrometry. Wiley, Canada, pp 177–239

  16. Ribechini E (2009) Direct mass spectrometric techniques: versatile tools to characterise resinous materials. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 77–95

    Google Scholar 

  17. Modugno F, Ribechini E (2009) GC/MS in the characterisation of resinous materials. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 215–235

    Chapter  Google Scholar 

  18. Colombini MP, Modugno F, Ribechini E (2012) Archaeometric data from mass spectrometric analysis of organic materials: proteins, lipids, terpenoid resins, lignocellulosic polymers, and dyestuff. In: Mass spectrometry handbook. John Wiley & Sons, Inc., pp 797–828

  19. Evershed RP (2009) Compound-specific stable isotopes in organic residue analysis in archaeology. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 389–432

    Chapter  Google Scholar 

  20. Clark KA, Ikram S, Evershed RP (2013) Organic chemistry of balms used in the preparation of pharaonic meat mummies. Proc Natl Acad Sci 110(51):20392–20395

    Article  CAS  Google Scholar 

  21. Hansel FA, Bull ID, Evershed RP (2011) Gas chromatographic mass spectrometric detection of dihydroxy fatty acids preserved in the ‘bound’ phase of organic residues of archaeological pottery vessels. Rapid Commun Mass Spectrom 25(13):1893–1898

    Article  CAS  Google Scholar 

  22. Evershed RP (2008) Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry 50(6):895–924

    Article  CAS  Google Scholar 

  23. Copley M et al (2005) Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 130(6):860–871

    Article  CAS  Google Scholar 

  24. Evershed R et al (2004) Archaeology: formulation of a Roman cosmetic. Nature 432(7013):35–36

    Article  CAS  Google Scholar 

  25. Buckley SA, Clark KA, Evershed RP (2004) Complex organic chemical balms of Pharaonic animal mummies. Nature 431(7006):294–299

    Article  CAS  Google Scholar 

  26. Modugno F, Ribechini E, Colombini MP (2006) Chemical study of triterpenoid resinous materials in archaeological findings by means of direct exposure electron ionisation mass spectrometry and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 20(11):1787–1800

    Article  CAS  Google Scholar 

  27. Ribechini E et al (2008) Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria. J Chromatogr A 1183(1):158–169

    Article  CAS  Google Scholar 

  28. Modugno F, Ribechini E, Colombini MP (2006) Aromatic resin characterisation by gas chromatography–mass spectrometry: raw and archaeological materials. J Chromatogr A 1134(1):298–304

    Article  CAS  Google Scholar 

  29. Ribechini E et al (2008) An integrated analytical approach for characterizing an organic residue from an archaeological glass bottle recovered in Pompeii (Naples, Italy). Talanta 74(4):555–561

    Article  CAS  Google Scholar 

  30. Colombini MP, Modugno F, Ribechini E (2005) Direct exposure electron ionization mass spectrometry and gas chromatography/mass spectrometry techniques to study organic coatings on archaeological amphorae. J Mass Spectrom 40(5):675–687

    Article  CAS  Google Scholar 

  31. Colombini MP, Modugno F, Ribechini E (2005) Organic mass spectrometry in archaeology: evidence for Brassicaceae seed oil in Egyptian ceramic lamps. J Mass Spectrom 40(7):890–898

    Article  CAS  Google Scholar 

  32. Ribechini E et al (2009) Py-GC/MS, GC/MS and FTIR investigations on LATE Roman–Egyptian adhesives from opus sectile: new insights into ancient recipes and technologies. Anal Chim Acta 638(1):79–87

    Article  CAS  Google Scholar 

  33. Colombini M et al (2009) An Etruscan ointment from Chiusi (Tuscany, Italy): its chemical characterization. J Archaeol Sci 36(7):1488–1495

    Article  Google Scholar 

  34. Pérez-Arantegui J et al (2009) Colorants and oils in Roman make-ups—an eye witness account. TrAC Trends Anal Chem 28(8):1019–1028

    Article  CAS  Google Scholar 

  35. Ribechini E, Pérez-Arantegui J, Colombini MP (2011) Gas chromatography/mass spectrometry and pyrolysis-gas chromatography/mass spectrometry for the chemical characterisation of modern and archaeological figs (Ficus carica). J Chromatogr A 1218(25):3915–3922

    Article  CAS  Google Scholar 

  36. Ribechini E et al (2011) Discovering the composition of ancient cosmetics and remedies: analytical techniques and materials. Anal Bioanal Chem 401(6):1727–1738

    Article  CAS  Google Scholar 

  37. Giachi G et al (2013) Ingredients of a 2000-y-old medicine revealed by chemical, mineralogical, and botanical investigations. Proc Natl Acad Sci 110(4):1193–1196

    Article  CAS  Google Scholar 

  38. Orsini S et al (2015) Micromorphological and chemical elucidation of the degradation mechanisms of birch bark archaeological artefacts. Herit Sci 3(1):2

    Article  CAS  Google Scholar 

  39. Colombini M et al (2005) Characterisation of organic residues in pottery vessels of the Roman age from Antinoe (Egypt). Microchem J 79(1):83–90

    Article  CAS  Google Scholar 

  40. Tchapla A et al (2004) Characterisation of embalming materials of a mummy of the Ptolemaic era. Comparison with balms from mummies of different eras. J Sep Sci 27(3):217–234

    Article  CAS  Google Scholar 

  41. Stacey R (2011) The composition of some Roman medicines: evidence for Pliny’s Punic wax? Anal Bioanal Chem 401(6):1749–1759

    Article  CAS  Google Scholar 

  42. Connan J, Nissenbaum A (2003) Conifer tar on the keel and hull planking of the Ma’agan Mikhael Ship (Israel, 5th century BC): identification and comparison with natural products and artefacts employed in boat construction. J Archaeol Sci 30(6):709–719

    Article  Google Scholar 

  43. Brettell R et al (2015) ‘Choicest unguents’: molecular evidence for the use of resinous plant exudates in late Roman mortuary rites in Britain. J Archaeol Sci 53:639–648

    Article  CAS  Google Scholar 

  44. Steele VJ, Stern B, Stott AW (2010) Olive oil or lard?: distinguishing plant oils from animal fats in the archeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 24(23):3478–3484

    Article  CAS  Google Scholar 

  45. Marangou C, Stern B (2009) Neolithic zoomorphic vessels from eastern Macedonia, Greece: issues of function. Archaeometry 51(3):397–412

    Article  CAS  Google Scholar 

  46. Stern B et al (2008) New investigations into the Uluburun resin cargo. J Archaeol Sci 35(8):2188–2203

    Article  Google Scholar 

  47. Regert M (2011) Analytical strategies for discriminating archeological fatty substances from animal origin. Mass Spectrom Rev 30(2):177–220

    Article  CAS  Google Scholar 

  48. Cramp LJ et al (2014) Neolithic dairy farming at the extreme of agriculture in northern Europe. Proc R Soc Lond B Biol Sci 281(1791):20140819

    Article  Google Scholar 

  49. Cramp LJ et al (2014) Immediate replacement of fishing with dairying by the earliest farmers of the northeast Atlantic archipelagos. Proc R Soc Lond B Biol Sci 281(1780):20132372

    Article  Google Scholar 

  50. Salque M et al (2013) Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493(7433):522–525

    Article  CAS  Google Scholar 

  51. Outram AK et al (2012) Patterns of pastoralism in later Bronze Age Kazakhstan: new evidence from faunal and lipid residue analyses. J Archaeol Sci 39(7):2424–2435

    Article  CAS  Google Scholar 

  52. Dunne J et al (2012) First dairying in green Saharan Africa in the fifth millennium BC. Nature 486(7403):390–394

    Article  CAS  Google Scholar 

  53. Grieco D, Piepoli G (1964) Composizione degli acidi grassi contenuti nei lipidi estratti da semi e frutti oleosi. Rivista Italiana delle Sostanze Grasse, pp 283–287

  54. O’Donoghue K et al (1996) Remarkable preservation of biomolecules in ancient radish seeds. Proc R Soc Lond B Biol Sci 263(1370):541–547

    Article  Google Scholar 

  55. Sandy DB (1989) The production and use of vegetable-oils in Ptolemaic Egypt. Scholars Press, GA, Atlanta

  56. McGovern PE et al (2013) Beginning of viniculture in France. Proc Natl Acad Sci 110(25):10147–10152

    Article  CAS  Google Scholar 

  57. McGovern PE et al (2004) Fermented beverages of pre-and proto-historic China. Proc Natl Acad Sci USA 101(51):17593–17598

    Article  CAS  Google Scholar 

  58. Correa-Ascencio M et al (2014) Pulque production from fermented agave sap as a dietary supplement in Prehispanic Mesoamerica. Proc Natl Acad Sci 111(39):14223–14228

    Article  CAS  Google Scholar 

  59. Charrié-Duhaut A et al (2013) First molecular identification of a hafting adhesive in the Late Howiesons Poort at diepkloof Rock shelter (Western Cape, South Africa). J Archaeol Sci 40(9):3506–3518

    Article  CAS  Google Scholar 

  60. Charrié-Duhaut A et al (2009) Molecular and isotopic archaeology: top grade tools to investigate organic archaeological materials. C R Chim 12(10):1140–1153

    Article  CAS  Google Scholar 

  61. Buonasera TY et al (2015) Lipid biomarkers and compound specific δ 13 C analysis indicate early development of a dual-economic system for the Arctic Small Tool tradition in northern Alaska. J Archaeol Sci 61:129–138

    Article  CAS  Google Scholar 

  62. Crowther A et al (2015) Use of Zanzibar copal (Hymenaea verrucosa Gaertn.) as incense at Unguja Ukuu, Tanzania in the 7–8th century CE: chemical insights into trade and Indian Ocean interactions. J Archaeol Sci 53:374–390

    Article  CAS  Google Scholar 

  63. Ostapkowicz J et al (2013) Birdmen, cemís and duhos: material studies and AMS 14 C dating of Pre-Hispanic Caribbean wood sculptures in the British Museum. J Archaeol Sci 40(12):4675–4687

    Article  CAS  Google Scholar 

  64. Stacey R, Cartwright C, McEwan C (2006) Chemical characterization of ancient Mesoamerican ‘copal’resins: preliminary results. Archaeometry 48(2):323–340

    Article  CAS  Google Scholar 

  65. Otero JG, Schuster V, Svoboda A (2015) Fish and plants: the “hidden” resources in the archaeological record of the North–central Patagonian coast (Argentina). Quat Int 373:72–81

    Article  Google Scholar 

  66. Kanthilatha N et al (2014) Identification of preserved fatty acids in archaeological floor sediments from prehistoric sites at Ban Non Wat and Nong Hua Raet in northeast Thailand using gas chromatography. J Archaeol Sci 46:353–362

    Article  CAS  Google Scholar 

  67. Yuasa K et al. (2014) Analysis of Japanese ancient lacquerwares excavated from Jōmon period ruins. J Anal Appl Pyrol 113:73–77

    Article  CAS  Google Scholar 

  68. Wei S, Song G, He Y (2015) The identification of binding agent used in late Shang Dynasty turquoise-inlayed bronze objects excavated in Anyang. J Archaeol Sci 59:211–218

    Article  CAS  Google Scholar 

  69. Bleton J, Tchapla A (2009) SPME/GC-MS in the characterisation of terpenic resins. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, New York, pp 261–302

    Chapter  Google Scholar 

  70. Regert M et al (2006) Molecular characterisation of birch bark tar by headspace solid-phase microextraction gas chromatography–mass spectrometry: a new way for identifying archaeological glues. J Chromatogr A 1101(1):245–253

    Article  CAS  Google Scholar 

  71. van der Werf I et al (2014) A quasi non-destructive approach for amber geological provenance assessment based on head space solid-phase microextraction gas chromatography–mass spectrometry. Talanta 119:435–439

    Article  CAS  Google Scholar 

  72. Łucejko JJ, et al (2015) Analytical instrumental techniques to study archaeological wood degradation. Appl Spectrosc Rev (just-accepted)

  73. Sáiz-Jiménez C, De Leeuw J (1984) Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins. Org Geochem 6:417–422

    Article  Google Scholar 

  74. Faix O, Meier D, Fortmann I (1990) Thermal degradation products of wood. Eur J Wood Wood Prod Holz als Roh-und Werkstoff 48(7–8):281–285

    CAS  Google Scholar 

  75. Sáiz-Jiménez C, De Leeuw J (1986) Lignin pyrolysis products: their structures and their significance as biomarkers. Org Geochem 10(4):869–876

    Article  Google Scholar 

  76. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546

    Article  CAS  Google Scholar 

  77. Challinor JM (2001) Review: the development and applications of thermally assisted hydrolysis and methylation reactions. J Anal Appl Pyrol 61(1):3–34

    Article  CAS  Google Scholar 

  78. Saiz-Jimenez C et al (1987) Chemical characterization of recent and buried woods by analytical pyrolysis. Comparison of pyrolysis data with 13C NMR and wet chemical data. J Anal Appl Pyrol 11:437–450

    Article  CAS  Google Scholar 

  79. Uçar G et al (2005) Analytical pyrolysis and FTIR spectroscopy of fossil Sequoiadendron giganteum (Lindl.) wood and MWLs isolated hereof. Eur J Wood Wood Prod Holz als Roh- und Werkstoff 63(1):57–63

    Article  CAS  Google Scholar 

  80. Yang H et al (2005) Biomolecular preservation of Tertiary Metasequoia Fossil Lagerstätten revealed by comparative pyrolysis analysis. Rev Palaeobot Palynol 134(3–4):237–256

    Article  Google Scholar 

  81. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  CAS  Google Scholar 

  82. Del Rıo J et al (2001) Py–GC/MS study of Eucalyptus globulus wood treated with different fungi. J Anal Appl Pyrol 58:441–452

    Google Scholar 

  83. Oudia A et al (2009) Analytical pyrolysis study of biodelignification of cloned Eucalyptus globulus (EG) clone and Pinus pinaster Aiton kraft pulp and residual lignins. J Anal Appl Pyrol 85(1):19–29

    Article  CAS  Google Scholar 

  84. Ibarra D et al (2004) Isolation of high-purity residual lignins from eucalypt paper pulps by cellulase and proteinase treatments followed by solvent extraction. Enzyme Microbial Technol 35(2):173–181

    Article  CAS  Google Scholar 

  85. Colombini MP et al (2009) A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta 80(1):61–70

    Article  CAS  Google Scholar 

  86. Richards V, West N (2002) The use of pyrolysis gas chromatography mass spectrometry to study the extent of degradation of waterlogged wood. In: Proceedings of the 8th ICOM Group on wet organic archaeological materials conference, Stockholm, 11–15 June 2001. Deutsches Schiffahrtsmuseum

  87. Łucejko JJ et al (2009) Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques. Anal Chim Acta 654(1):26–34

    Article  CAS  Google Scholar 

  88. Łucejko JJ et al (2012) Analytical pyrolysis vs. classical wet chemical analysis to assess the decay of archaeological waterlogged wood. Anal Chim Acta 745:70–77

    Article  CAS  Google Scholar 

  89. Tamburini D et al (2014) Characterisation of archaeological waterlogged wood from Herculaneum by pyrolysis and mass spectrometry. Int Biodeterior Biodegrad 86:142–149

    Article  CAS  Google Scholar 

  90. van Bergen PF et al (2000) Evidence for demethylation of syringyl moieties in archaeological wood using pyrolysis-gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 14(2):71–79

    Article  Google Scholar 

  91. Tamburini D et al. (2015) Archaeological wood degradation at the site of Biskupin (Poland): wet chemical analysis and evaluation of specific Py-GC/MS profiles. J Anal Appl Pyrol 115:7–15

    Article  CAS  Google Scholar 

  92. Fabbri D, Helleur R (1999) Characterization of the tetramethylammonium hydroxide thermochemolysis products of carbohydrates. J Anal Appl Pyrol 49(1):277–293

    Article  CAS  Google Scholar 

  93. Kuroda K-I, Nakagawa-izumi A (2006) Tetramethylammonium hydroxide (TMAH) thermochemolysis of lignin: improvement of the distribution profile of products derived from β-aryl ether subunits. J Anal Appl Pyrol 75(2):104–111

    Article  CAS  Google Scholar 

  94. Kuroda K-I (2000) Pyrolysis-trimethylsilylation analysis of lignin: preferential formation of cinnamyl alcohol derivatives. J Anal Appl Pyrol 56(1):79–87

    Article  CAS  Google Scholar 

  95. Abdel-Ghani M et al (2009) Characterization of paint and varnish on a medieval Coptic-Byzantine icon: novel usage of dammar resin. Spectrochim Acta Part A Mol Biomol Spectrosc 73(3):566–575

    Article  CAS  Google Scholar 

  96. Andreotti A et al (2014) Characterization of the organic materials used in the painting of the vaulted ceiling at the Saadian Tomb of Mulay Ahmed Al-Mansour (Marrakech). J Cult Heritage 15(3):300–307

    Article  Google Scholar 

  97. Andreotti A et al (2009) A diagnosis of the yellowing of the marble high reliefs and the black decorations in the chapel of the tomb of Saint Anthony (Padua, Italy). Int J Mass Spectrom 284(1):123–130

    Article  CAS  Google Scholar 

  98. Atrei A et al (2014) An integrated approach to the study of a reworked painting “Madonna with child” attributed to Pietro Lorenzetti. J Cult Heritage 15(1):80–84

    Article  Google Scholar 

  99. Baumer U, Dietemann P (2010) Identification and differentiation of dragon’s blood in works of art using gas chromatography/mass spectrometry. Anal Bioanal Chem 397(3):1363–1376

    Article  CAS  Google Scholar 

  100. Bersani D et al (2008) Pigments and binders in “Madonna col Bambino e S. Giovannino” by Botticelli investigated by micro-Raman and GC/MS. J Cult Heritage 9(1):97–102

    Article  Google Scholar 

  101. Blaško J et al (2008) Gas chromatography/mass spectrometry of oils and oil binders in paintings. J Sep Sci 31(6–7):1067–1073

    Article  CAS  Google Scholar 

  102. Bonaduce I et al (2008) The binding media of the polychromy of Qin Shihuang’s Terracotta Army. J Cult Heritage 9(1):103–108

    Article  Google Scholar 

  103. Brécoulaki H et al (2012) Characterization of organic media in the wall-paintings of the “Palace of Nestor” at Pylos, Greece: evidence for a secco painting techniques in the Bronze Age. J Archaeol Sci 39(9):2866–2876

    Article  CAS  Google Scholar 

  104. Caruso F et al (2007) Gas chromatography–mass spectrometry characterization of the varnish and glue of an ancient 18th century double bass. J Chromatogr A 1147(2):206–212

    Article  CAS  Google Scholar 

  105. Cauzzi D et al (2013) Spectroscopic and chromatographic studies of sculptural polychromy in the Zhongshan Grottoes (RPC). J Cult Heritage 14(1):70–75

    Article  Google Scholar 

  106. Čukovska LR et al (2012) Micro-Raman and GC/MS analysis to characterize the wall painting technique of Dicho Zograph in churches from Republic of Macedonia. J Raman Spectrosc 43(11):1685–1693

    Article  CAS  Google Scholar 

  107. Daniilia S et al (2008) From Byzantine to post-Byzantine art: the painting technique of St Stephen’s wall paintings at Meteora, Greece. J Archaeol Sci 35(9):2474–2485

    Article  Google Scholar 

  108. Daniilia S et al (2007) The Byzantine wall paintings from the Protaton Church on Mount Athos, Greece: tradition and science. J Archaeol Sci 34(12):1971–1984

    Article  Google Scholar 

  109. Ferreira ES, Van der Horst J, Boon JJ (2005) Chemical aspects of the binding media of the Oranjezaal ensemble: an insight into 17th century Netherlandish materials and methods. In: Proceedings of the 14th ICOM-CC meeting in The Hague (I. Vergier ed), Preprint vol II

  110. Guttmann MJ (2013) Transylvanian glass icons: a GC/MS study on the binding media. J Cult Heritage 14(5):439–447

    Article  Google Scholar 

  111. Kalinina KB et al (2012) An analytical investigation of the painting technique of Italian Renaissance master Lorenzo Lotto. J Cult Heritage 13(3):259–274

    Article  Google Scholar 

  112. Ling H et al (2007) Analytical characterization of binding medium used in ancient Chinese artworks by pyrolysis–gas chromatography/mass spectrometry. Microchem J 85(2):347–353

    Article  CAS  Google Scholar 

  113. Miliani C et al (2007) Non-invasive in situ investigations versus micro-sampling: a comparative study on a Renoirs painting. Appl Phys A 89(4):849–856

    Article  CAS  Google Scholar 

  114. Ospitali F et al (2007) XVI century wall paintings in the “Messer Filippo” cell of the tower of Spilamberto: microanalyses and monitoring. J Cult Heritage 8(3):323–327

    Article  Google Scholar 

  115. Pitthard V, et al (2006) Study of complex organic binding media systems on artworks applying GC‐MS analysis: selected examples from the Kunsthistorisches Museum, Vienna. In: Macromolecular symposia.Wiley Online Library

  116. Rampazzi L et al (2007) Prehistoric wall paintings: the case of the Domus de Janas necropolis (Sardinia, Italy). Archaeometry 49(3):559–569

    Article  CAS  Google Scholar 

  117. Rasmussen KL et al (2012) The constituents of the ink from a Qumran inkwell: new prospects for provenancing the ink on the Dead Sea Scrolls. J Archaeol Sci 39(9):2956–2968

    Article  CAS  Google Scholar 

  118. Scott DA et al (2009) Examination of some pigments, grounds and media from Egyptian cartonnage fragments in the Petrie Museum, University College London. J Archaeol Sci 36(3):923–932

    Article  Google Scholar 

  119. Valianou L et al (2011) Identification of organic materials in icons of the Cretan School of iconography. J Archaeol Sci 38(2):246–254

    Article  Google Scholar 

  120. van der Werf ID et al (2013) Multi-technique chemical characterisation of a 12–13th-century painted Crucifix. Microchem J 106:87–94

    Article  CAS  Google Scholar 

  121. van der Werf ID et al (2008) San Francesco d’Assisi (Apulia, South Italy): study of a manipulated 13th century panel painting by complementary diagnostic techniques. J Cult Heritage 9(2):162–171

    Article  Google Scholar 

  122. Vázquez C et al (2008) Combining TXRF, FT-IR and GC–MS information for identification of inorganic and organic components in black pigments of rock art from Alero Hornillos 2 (Jujuy, Argentina). Anal Bioanal Chem 391(4):1381–1387

    Article  CAS  Google Scholar 

  123. Wei S, Ma Q, Schreiner M (2012) Scientific investigation of the paint and adhesive materials used in the Western Han dynasty polychromy terracotta army, Qingzhou, China. J Archaeol Sci 39(5):1628–1633

    Article  CAS  Google Scholar 

  124. Wei S et al (2011) Analytical characterization of lacquer objects excavated from a Chu tomb in China. J Archaeol Sci 38(10):2667–2674

    Google Scholar 

  125. Andreotti A et al (2007) Novel applications of the Er: YAG laser cleaning of old paintings. In: Nimmrichter J, Kautek W, Schreiner M (eds) Lasers in the conservation of artworks. Springer, Berlin

    Google Scholar 

  126. Andreotti A, et al (2006) Multianalytical study of laser pulse duration effects in the IR laser cleaning of wall paintings from the Monumental Cemetery of Pisa. Laser Chem 2006:11, Art ID 39046. doi:10.1155/2006/39046

  127. Casoli A, Berzioli M, Cremonesi P (2013) The chemistry of egg binding medium and its interactions with organic solvents and water. New Insights Clean Paint 39:39–44

    Google Scholar 

  128. DeCruz A et al (2009) Investigation of the Er: YAG laser at 2.94 μm to remove lichens growing on stone. Stud Conserv 54(4):268–277

    Article  CAS  Google Scholar 

  129. Kahrim K et al (2009) The application of in situ mid-FTIR fibre-optic reflectance spectroscopy and GC–MS analysis to monitor and evaluate painting cleaning. Spectrochim Acta Part A Mol Biomol Spectrosc 74(5):1182–1188

    Article  CAS  Google Scholar 

  130. Lustrato G et al (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61

    Article  CAS  Google Scholar 

  131. Morrison R et al (2007) An investigation of parameters for the use of citrate solutions for surface cleaning unvarnished paintings. Stud Conserv 52(4):255–270

    Article  CAS  Google Scholar 

  132. Osete-Cortina L, Doménech-Carbó MT (2006) Study on the effects of chemical cleaning on pinaceae resin-based varnishes from panel and canvas paintings using pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrol 76(1):144–153

    Article  CAS  Google Scholar 

  133. Ranalli G et al (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98(1):73–83

    Article  CAS  Google Scholar 

  134. Sánchez-Ledesma A, Muro-García C, Gayo-García MD (2010) Effects of commercial soaps on unvarnished painted surfaces: a pilot study for their assessment. In: New insights into the Cleaning of Paintings. Proceedings from the cleaning 2010 international conference, Valencia

  135. Mazzeo R, et al (2010) Scientific examination of the traditional materials and techniques used in Yuan Dynasty wall paintings. In: Proceedings of the second international conference on the conservation of Grotto Sites, Mogao Grottoes, Dunhuang, People

  136. Riedo C, Scalarone D, Chiantore O (2010) Advances in identification of plant gums in cultural heritage by thermally assisted hydrolysis and methylation. Anal Bioanal Chem 396(4):1559–1569

    Article  CAS  Google Scholar 

  137. Riedo C, Scalarone D, Chiantore O (2013) Multivariate analysis of pyrolysis-GC/MS data for identification of polysaccharide binding media. Anal Methods 5(16):4060–4067

    Article  CAS  Google Scholar 

  138. Vicente JP et al (2005) Identification of lipid binders in old oil paintings by separation of 4-bromomethyl-7-methoxycoumarin derivatives of fatty acids by liquid chromatography with fluorescence detection. J Chromatogr A 1076(1):44–50

    Article  CAS  Google Scholar 

  139. Bonaduce I et al (2007) Gas chromatographic–mass spectrometric characterisation of plant gums in samples from painted works of art. J Chromatogr A 1175(2):275–282

    Article  CAS  Google Scholar 

  140. Hofta P (2006) Original Paper An evaluation of GC-MS and HPLC-FD methods for analysis of protein binders in paintings. J Sep Sci 29:2653–2663

    Article  CAS  Google Scholar 

  141. Osete-Cortina L, Doménech-Carbó MT (2005) Analytical characterization of diterpenoid resins present in pictorial varnishes using pyrolysis–gas chromatography–mass spectrometry with on line trimethylsilylation. J Chromatogr A 1065(2):265–278

    Article  CAS  Google Scholar 

  142. Piccirillo A, Scalarone D, Chiantore O (2005) Comparison between off-line and on-line derivatisation methods in the characterisation of siccative oils in paint media. J Anal Appl Pyrol 74(1):33–38

    Article  CAS  Google Scholar 

  143. Russell J et al (2011) The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography–mass spectrometry. Anal Bioanal Chem 400(5):1473–1491

    Article  CAS  Google Scholar 

  144. Sutherland K (2010) Bleached shellac picture varnishes: characterization and case studies. J Inst Conserv 33(2):129–145

    Article  Google Scholar 

  145. Fabbri D et al (2005) Profiling fatty acids in vegetable oils by reactive pyrolysis–gas chromatography with dimethyl carbonate and titanium silicate. J Chromatogr A 1100(2):218–222

    Article  CAS  Google Scholar 

  146. Melucci D et al (2011) Behaviour of phospholipids in analytical reactive pyrolysis. J Therm Anal Calorim 104(2):415–421

    Article  CAS  Google Scholar 

  147. Torri C et al (2013) Py-SPME-GC-MS with on-fiber derivatization as a new solvent-less technique for the study of polar macromolecules: application to natural gums. Microchem J 110:719–725

    Article  CAS  Google Scholar 

  148. Chiavari G, Fabbri D, Prati S (2005) Effect of pigments on the analysis of fatty acids in siccative oils by pyrolysis methylation and silylation. J Anal Appl Pyrol 74(1–2):39–44

    Article  CAS  Google Scholar 

  149. Gautier G, Colombini MP (2007) GC–MS identification of proteins in wall painting samples: a fast clean-up procedure to remove copper-based pigment interferences. Talanta 73(1):95–102

    Article  CAS  Google Scholar 

  150. Lluveras-Tenorio A et al (2012) Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases. Chem Cent J 6(1):115

    CAS  Google Scholar 

  151. Singer B, McGuigan R (2007) The simultaneous analysis of proteins, lipids, and diterpenoid resins found in cultural objects. Anal Chim 97(7):405–417

    Article  CAS  Google Scholar 

  152. Andreotti A et al (2006) Combined GC/MS analytical procedure for the characterization of glycerolipid, waxy, resinous, and proteinaceous materials in a unique paint microsampler. Anal Chem 78(13):4490–4500

    Article  CAS  Google Scholar 

  153. Bonaduce I, Cito M, Colombini MP (2009) The development of a gas chromatographic–mass spectrometric analytical procedure for the determination of lipids, proteins and resins in the same paint micro-sample avoiding interferences from inorganic media. J Chromatogr A 1216(32):5931–5939

    Article  CAS  Google Scholar 

  154. Echard J-P, Lavédrine B (2008) Review on the characterisation of ancient stringed musical instruments varnishes and implementation of an analytical strategy. J Cult Heritage 9(4):420–429

    Article  Google Scholar 

  155. Lluveras A et al (2009) GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal Chem 82(1):376–386

    Article  CAS  Google Scholar 

  156. Niimura N et al (1996) Characterization of Rhus vernicifera and Rhus Succedanea lacquer films and their pyrolysis mechanisms studied using two-stage pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrol 37:199–209

    Article  CAS  Google Scholar 

  157. Niimura N, Miyakoshi T (2003) Characterization of natural resin films and identification of ancient coating. J Mass Spectrom Soc Jpn 51(4):439–457

    Article  CAS  Google Scholar 

  158. Kumanotani J (1995) Urushi (oriental lacquer)—a natural aesthetic durable and future-promising coating. Prog Org Coat 26(2–4):163–195

    Article  CAS  Google Scholar 

  159. Le Hô A et al (2012) Molecular criteria for discriminating museum Asian lacquerware from different vegetal origins by pyrolysis gas chromatography/mass spectrometry. Anal Chim Acta 710:9–16

    Article  CAS  Google Scholar 

  160. Lu R et al. (2012) Analysis of Japanese Jomon lacquer-ware by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrol 103:68–72

    Article  CAS  Google Scholar 

  161. Lu R et al (2007) Identification of Ryukyu lacquerware by pyrolysis–gas chromatography/mass spectrometry. J Anal Appl Pyrol 80:101–110

    Article  CAS  Google Scholar 

  162. Lu R, Kamiya Y, Miyakoshi T (2006) Applied analysis of lacquer films based on pyrolysis-gas chromatography/mass spectrometry. Talanta 70:370–376

    Article  CAS  Google Scholar 

  163. Niimura N (2009) Determination of the type of lacquer on East Asian lacquer ware. Int J Mass Spectrom 284:93–97

    Article  CAS  Google Scholar 

  164. Niimura N, Miyakoshi T (2006) Structural study of oriental lacquer films during the hardening process. Talanta 70:146–152

    Article  CAS  Google Scholar 

  165. Niimura N et al (1999) Identification of ancient lacquer film using two stage pyrolysis-gas chromatography/mass spectrometry. Archeometry 41:137–149

    Article  CAS  Google Scholar 

  166. Pitthard V et al (2010) Scientific investigations of antique lacquers fron a 17th-century japanese ornamental cabinet. Archaeometry 52(6):1044–1056

    CAS  Google Scholar 

  167. Tamburini D, Bonaduce I, Colombini MP (2015) Characterization and identification of urushi using in situ pyrolysis/silylation–gas chromatography–mass spectrometry. J Anal Appl Pyrol 111:33–40

    Article  CAS  Google Scholar 

  168. Tamburini D, Bonaduce I, Colombini MP (2015) Characterisation of oriental lacquers from Rhus succedanea and Melanorrhoea usitata using in situ pyrolysis/silylation-gas chromatography mass spectrometry. J Anal Appl Pyrol 116:129–141

    Article  CAS  Google Scholar 

  169. Colombini MP, Bonaduce I, Gautier G (2003) Molecular pattern recognition of fresh and aged shellac. Chromatographia 58(5/6):357–364

    CAS  Google Scholar 

  170. Bonaduce I, Colombini MP (2004) Characterisation of beeswax in works of art by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry procedures. J Chromatogr A 1028(2):297–306

    Article  CAS  Google Scholar 

  171. Lattuati-Derieux A, Thao S, Langlois J, Regert M (2008) First results on headspace-solid phase microextraction-gas chromatography/mass spectrometry of volatile organic compounds emitted by wax objects in museums. J Chromatogr A 1187:239–249

    Article  CAS  Google Scholar 

  172. Duce C et al (2012) Physico-chemical characterization of protein-pigment interactions in tempera paint reconstructions: casein/cinnabar and albumin/cinnabar. Anal Bioanal Chem 402:2183–2193

    Article  CAS  Google Scholar 

  173. Duce C et al (2013) Interactions between inorganic pigments and proteinaceous binders in reference paint reconstructions. Dalton Trans 42(17):5975–5984

    Article  CAS  Google Scholar 

  174. Pellegrini D et al (2016) Fourier transform infrared spectroscopic study of rabbit glue/inorganic pigments mixtures in fresh and aged reference paint reconstructions. Microchem J 124:31–35

    Article  CAS  Google Scholar 

  175. Ormsby BA et al (2005) British Watercolour cakes from the eighteenth to the early twentieth century. Stud Conserv 50(1):45–66

    Article  CAS  Google Scholar 

  176. Colombini MP, Modugno F, Ribechini E (2009) GC/MS in the characterization of lipids. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, London, pp 191–214

    Chapter  Google Scholar 

  177. Bonaduce I, et al (2012) New insights into the ageing of linseed oil paint binder: a qualitative and quantitative analytical study. PLoS One 7(11)

  178. Shilling MR, Carson DM, Khanjian HP (1998) Evaporation of fatty acids and the formation of ghost images by framed oil paintings. West Assoc Art Conserv (WAAC) Newsletter, 21(1)

  179. Keune K, Noble P, Boon JJ (2002) Chemical changes in lead-pigmented oil paints: on the early stage of formation of protrusions. In: Proceeding of art 2002, the 7th international conference on non-destructive testing and microanalysis for the diagnostics and conservations of the cultural and environmental Heritage. Antwerp, Belgium

  180. van der Weerd J et al (2002) Chemical changes in old master paintings: dissolution, metal soap formation and remineralization processes in lead pigmented paint layers of 17th century paintings. Zeitschrift für Kunsttechnologie und Konservierung 16:36–51

    Google Scholar 

  181. Keune K et al (2008) Comparative study of the effect of traditional pigments on artificially aged oil paint systems using complementary analytical techniques. In: Bridgland J (ed) Preprints of 15th triennal meeting of ICOM committee for conservation. Allied Publishers Pvt. Ltd., New Delhi, pp 833–842

    Google Scholar 

  182. Shilling MR, Khanjian HP (1996) Gas chromatographic determination of the fatty acid and glycerol content of lipids. I: the effects of pigments and ageing on the composition of oil paints. In: Bridgland J (ed) ICOM committee for conservation, 11th triennial meeting in Edinburgh, Scotland, 1–6 September 1996: Preprints. James and James: London. pp 220–227

  183. Sutherland K (2000) The extraction of soluble components from an oil paint film by a varnish solution. Stud Conserv 45:54–62

    CAS  Google Scholar 

  184. Keune K, Ferreira ESB, Boon JJ (2005) Characterization and localization of the oil-binding medium in paint cross-sections using imaging secondary ion mass spectrometry. In: ICOM committee for conservation 14th triennial meeting 2005. James & James, The Hague, The Netherlands

  185. Phenix A, Sutherland K (2001) The cleaning of paintings: effects of organic solvents on oil paint films. Rev Conserv 2:47–60

    CAS  Google Scholar 

  186. Sutherland K (2003) Solvent-extractable components of linseed oil paint films. Stud Conserv 48:111–135

    Article  CAS  Google Scholar 

  187. Sutherland K (2006) Measurements of solvent cleaning effects on oil paintings. J Am Inst Conserv 45(3):211–226

    Article  Google Scholar 

  188. Lluveras-Tenorio A et al (2012) The development of a new analytical model for the identification of saccharide binders in paint samples. PLoS One 7(11):e49383

    Article  CAS  Google Scholar 

  189. Tsakalof AK, Bairachtari KA, Chryssoulakis ID (2006) Pitfalls in drying oils identification in art objects by gas chromatography. J Sep Sci 29(11):1642–1646

    Article  CAS  Google Scholar 

  190. van Keulen H (2009) Gas chromatography/mass spectrometry methods applied for the analysis of a Round Robin sample containing materials present in samples of works of art. Int J Mass Spectrom 284(1):162–169

    Article  CAS  Google Scholar 

  191. Scalarone D, Chiantore O (2002) The use of pyrolysis-GC/MS for the identification of polymeric constituents in artworks, museum and collectible design objects. In: Plastics in art: history, technology, preservation, Siegl. pp 90–104

  192. Izzo FC et al (2014) 20th century artists’ oil paints: the case of the olii by Lucio Fontana. J Cult Heritage 15(5):557–563

    Article  Google Scholar 

  193. Izzo FC, et al (2014) Modern oil paints–formulations, organic additives and degradation: some case studies. In: Issues in contemporary oil paint. Springer, pp 75–104

  194. La Nasa J, Zanaboni M, Uldanck D, Degano I, Modugno F, Kutzke H, Tveit ES, Topalova-Casadiego B, Colombini MP (2015) Novel application of liquid chromatography/mass spectrometry for the characterization of drying oils in art: elucidation on the composition of original paint materials used by Edvard Munch (1863–1944). Anal Chim Acta

  195. Schilling MR, Mazurek J, Learner TJS (2007) Studies of modern oil-based artists’ paint media by gas chromatography/mass spectrometry. In: In modern paints uncovered: proceedings from the modern paints uncovered symposium. Getty Conservation Institute, Los Angeles. pp 129–139

  196. Cappitelli F, Koussiaki F (2006) THM-GCMS and FTIR for the investigation of paints in Picasso’s Still Life, Weeping Woman and Nude Woman in a Red Armchair from the Tate Collection, London. J Anal ApplPyrol 75:200–204

    CAS  Google Scholar 

  197. van den Berg KJ et al (2014) Issues in contemporary oil paint. Springer, New York

    Google Scholar 

  198. Ghelardi E (2014) A multi analytical approach for the characterisation of the contemporary paint materials. PhD thesis, Università degli Studi di Firenze

  199. Burnstock A, et al (2007) An investigation of water-sensitive oil paints. In: Modern paints uncovered: proceedings from the modern paints uncovered symposium. Getty Publications

  200. Bayliss S et al (2016) An investigation into the separation and migration of oil in paintings by Erik Oldenhof. Microchem J 124:974–982

    Article  CAS  Google Scholar 

  201. Narine SS, Kong X (2005) Vegetable oils in production of polymers and plastics. Bailey’s Ind Oil Fat Prod

  202. Schilling MR, Keeney J, Leamer T (2004) Characterization of alkyd paint media by gas chromatography-mass spectrometry. Stud Conserv 49(Supplement-2):197–201

    Article  Google Scholar 

  203. Wei S, Pintus V, Schreiner M (2013) A comparison study of alkyd resin used in art works by Py-GC/MS and GC/MS: the influence of aging. J Anal Appl Pyrol 104:441–447

    Article  CAS  Google Scholar 

  204. La Nasa J et al (2013) Alkyd paints in art: characterization using integrated mass spectrometry. Anal Chim Acta 797:64–80

    Article  CAS  Google Scholar 

  205. Ploeger R, Scalarone D, Chiantore O (2008) The characterization of commercial artists’ alkyd paints. J Cult Heritage 9:412–419

    Article  Google Scholar 

  206. Cappitelli F (2004) THM-GCMS and FTIR for the study of binding media in Yellow Islands by Jackson Pollock and Break Point by Fiona Banner. J Anal Appl Pyrol 71(1):405–415

    Article  CAS  Google Scholar 

  207. Challinor J (1991) Structure determination of alkyd resins by simultaneous pyrolysis ethylation. J Anal Appl Pyrol 18(3):233–244

    Article  CAS  Google Scholar 

  208. Dietemann P et al (1865) A colloidal description of tempera and oil paints, based on a case study of Arnold Böcklin’s painting Villa am Meer II (1865). e-Preserv Sci 2014(11):29–46

    Google Scholar 

  209. Mustalish R (2004) Modern materials: plastics. In: Heilbrunn timeline of art history. The Metropolitan Museum of Art, New York, 2000. http://www.metmuseum.org/toah/hd/mome/hd_mome.htm

  210. Altshuler B (2007) Collecting the new: museums and contemporary art. Princeton University Press, Princeton

    Google Scholar 

  211. Lavédrine B, Fournier A, Martin G (2012) Preservation of plastic artefacts in museum collections. Comité Des Travaux Historiques Et Scientifiques

  212. Learner T (2001) The analysis of synthetic paints by pyrolysis-gas chromatography-mass spectrometry (PyGCMS). Stud Conserv 46:225–241

    CAS  Google Scholar 

  213. Tsuge S, Ohtani H, Watanabe C (2011) Pyrolysis-GC/MS data book of synthetic polymers: pyrograms, thermograms and MS of pyrolyzates. Elsevier, Amsterdam

    Google Scholar 

  214. Wampler TP (2007) Applied pyrolysis handbook, ed. CRC press Taylor and Francis group, New York

  215. Silva MF et al (2009) Determination of the plasticizer content in poly(vinyl acetate) paint medium by pyrolysis-silylation-gas chromatography-mass spectrometry. J Anal Appl Pyrol 85(1–2):487–491

    Article  CAS  Google Scholar 

  216. Salam LA, Matthews RD, Robertson H (2000) Pyrolysis of poly-methyl methacrylate (PMMA) binder in thermoelectric green tapes made by the tape casting method. J Eur Ceram Soc 20(3):335–345

    Article  CAS  Google Scholar 

  217. Cortina LO, Carbò MTD (2006) Characterization of acrylic resins used for restoration of artworks by pyrolysis-silylation-gas chromatography/mass spectrometry with hesamethyldisilazane. J Chromatogr A 1127:228–236

    Article  CAS  Google Scholar 

  218. Carbò MTD et al (2008) Characterization of polyvinyl resins used as binding media in paintings by pyrolysis-silylation -gas chromatography-mass spectrometry. Anal Bioanal Chem 391:1371–1379

    Article  CAS  Google Scholar 

  219. Wei S, Pintus V, Schreiner M (2012) Photochemical degradation study of polyvinyl acetate paints used in artworks by Py–GC/MS. J Anal Appl Pyrol 97:158–163

    Article  CAS  Google Scholar 

  220. Di Crescenzo MM et al (2014) The use of waterborne paints in contemporary murals: comparing the stability of vinyl, acrylic and styrene-acrylic formulations to outdoor weathering conditions. Polym Degrad Stab 107:285–293

    Article  CAS  Google Scholar 

  221. Rainer L (2003) The conservation of outdoor contemporary murals. GCI Newsl 18

  222. Ormsby B, Learner T (2009) The effects of wet surface cleaning treatments on acrylic emulsion artists’ paints—a review of recent scientific research. Stud Conserv 54(Supplement-1):29–41

    Article  Google Scholar 

  223. Jablonski E et al (2003) Conservation concerns for acrylic emulsion paints. Stud Conserv 48(Supplement-1):3–12

    Article  Google Scholar 

  224. Ormsby B, et al (2006) The effects of surface cleaning on acrylic emulsion paintings: a preliminary investigation. Tate Papers 6

  225. Wolbers R, Norbutus A, Lagalante A (2013) Cleaning of acrylic emulsion paints: preliminary extractive studies with two commercial paint systems. In: New insights into the cleaning of paintings: proceedings of the cleaning 2010 conference, Smithsonian Institution Scholarly Press, Washington DC

  226. Dillon CE, Lagalante AF, Wolbers RC (2014) Acrylic emulsion paint films: the effect of solution pH, conductivity, and ionic strength on film swelling and surfactant removal. Stud Conserv 59(1):52–62

    Article  CAS  Google Scholar 

  227. Chiantore O, Scalarone D, Learner T (2003) Characterization of artists’ acrylic emulsion paints. Int J Polym Anal Charact 8(1):67–82

    Article  CAS  Google Scholar 

  228. Scalarone D, Chiantore O (2004) Separation techniques for the analysis of artists’ acrylic emulsion paints. J Sep Sci 27:263–274

    Article  CAS  Google Scholar 

  229. La Nasa J et al (2016) A chemical study of organic materials in three murals by Keith Haring: a comparison of painting techniques. Microchem J 124:940–948

    Article  CAS  Google Scholar 

  230. Silva M et al (2010) Identification of additives in poly(vinylacetate) artist’s paints using PY-GC-MS. Anal Bioanal Chem 397(1):357–367

    Article  CAS  Google Scholar 

  231. Pintus V, Wei S, Schreiner M (2012) UV ageing studies: evaluation of lightfastness declarations of commercial acrylic paints. Anal Bioanal Chem 402(4):1567–1584

    Article  CAS  Google Scholar 

  232. Shilling M, et al (2012) Identification and chemical composition using chromatographic methods. In: Lavédrine B, Fournier A, Martin G (eds). Preservation of plastic artefacts in museum collections. Comité Des Travaux Historiques Et Scientifiques, pp 61–69

  233. Pedersoli JL, Ligterink F, van Bommel M (2011) Non-destructive determination of acetic acid and furfural in books by solid-phase micro-extraction (SPME) and gas chromatography-mass spectrometry (GC/MS). Restaurator 32(2):110–134

    CAS  Google Scholar 

  234. Strlič M et al (2009) Material degradomics: on the smell of old books. Anal Chem 81(20):8617–8622

    Article  CAS  Google Scholar 

  235. Łojewski T et al (2010) Furfural as a marker of cellulose degradation. A quantitative approach. Appl Phys A 100(3):873–884

    Article  CAS  Google Scholar 

  236. Curran K, et al (2013) Heritage smells! analysis of VOC emissions from historic plastics using SPME-GC/MS. In: 6th users’ group for mass spectrometry and chromatography meeting 2013, Pisa, Italy

  237. Lattuati-Derieux A et al (2013) What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections. J Cult Heritage 14(3):238–247

    Article  Google Scholar 

  238. Curran K, Strlič M (2015) Polymers and volatiles: using VOC analysis for the conservation of plastic and rubber objects. Stud Conserv 60(1):1–14

    Article  CAS  Google Scholar 

  239. Brimblecombe P (ed) (2003) The effects of air pollution on the built environment. Imperial College Press, London

    Google Scholar 

  240. Schieweck A et al (2007) Occurrence of organic and inorganic biocides in the museum environment. Atmos Environ 41(15):3266–3275

    Article  CAS  Google Scholar 

  241. Godoi AF, Van Vaeck L, Van Grieken R (2005) Use of solid-phase microextraction for the detection of acetic acid by ion-trap gas chromatography–mass spectrometry and application to indoor levels in museums. J Chromatogr A 1067(1):331–336

    Article  CAS  Google Scholar 

  242. Thiébaut B et al (2007) Application of headspace SPME-GC-MS in characterisation of odorous volatile organic compounds emitted from magnetic tape coatings based on poly (urethane-ester) after natural and artificial ageing. Polym Testing 26(2):243–256

    Article  CAS  Google Scholar 

  243. Mitchell G, Higgitt C, Gibson LT (2014) Emissions from polymeric materials: characterised by thermal desorption-gas chromatography. Polym Degrad Stab 107:328–340

    Article  CAS  Google Scholar 

  244. Curran K et al (2014) Cross-infection effect of polymers of historic and heritage significance on the degradation of a cellulose reference test material. Polym Degrad Stab 107:294–306

    Article  CAS  Google Scholar 

  245. Schieweck A, Salthammer T (2011) Indoor air quality in passive-type museum showcases. J Cult Heritage 12(2):205–213

    Article  Google Scholar 

  246. López-Aparicio S et al (2010) Measurement of organic and inorganic pollutants in microclimate frames for paintings. e-Preserv Sci 7:59–70

    Google Scholar 

  247. Risholm-Sundman M et al (1998) Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Eur J Wood Wood Prod 56(2):125–129

    Article  Google Scholar 

  248. Oikawa T et al (2005) Volatile organic compounds from wood and their influences on museum artifact materials I. Differences in wood species and analyses of causal substances of deterioration. J Wood Sci 51(4):363–369

    Article  CAS  Google Scholar 

  249. Sabbioni C, Ghedinia N, Bonazza A (2003) Organic anions in damage layers on monuments and buildings. Atmos Environ 37:1261–1269

    Article  CAS  Google Scholar 

  250. Tétreault J (2003) Airborne pollutants in museums, galleries, and archives: risk assessment, control strategies and preservation management. Ottawa, Canadian Conservation Institute

    Google Scholar 

  251. Linnow K, Halsberghe L, Steiger M (2007) Analysis of calcium acetate efflorescences formed on ceramic tiles in a museum environment. J Cult Heritage 8:44–52

    Article  Google Scholar 

  252. Gibson LT et al (1997) Investigation of the composition of a unique efflorescence on calcareous museum artifacts. Anal Chim Acta 337:253–264

    Article  CAS  Google Scholar 

  253. Tetreault J et al (2003) Corrosion of copper and lead by formaldehyde, formic and acetic acid vapours. Stud Conserv 48:237–250

    Article  CAS  Google Scholar 

  254. Ryhl-Svendsen M (2008) Corrosivity measurements of indoor museum environments using lead coupons as dosimeters. J Cult Heritage 9:285–293

    Article  Google Scholar 

  255. Brimblecombe P, Grossi CM (2012) Carbonyl compounds indoors in a changing climate. Chem Cent J 6:21

    Article  CAS  Google Scholar 

  256. Dupont A-L, Tétreault J (2000) Cellulose degradation in an acetic acid environment. Stud Conserv 45:201–210

    CAS  Google Scholar 

  257. Strlič M et al (2011) The effect of volatile organic compounds and hypoxia on paper degradation. Polym Degrad Stab 96:608–615

    Article  CAS  Google Scholar 

  258. Bonaduce I et al (2013) The role of organic and inorganic indoor pollutants in museum environments in the degradation of dammar varnish. Analyst 138(2):487–500

    Article  CAS  Google Scholar 

  259. La Nasa J et al (2014) Effects of acetic acid vapour on the ageing of alkyd paint layers: multi-analytical approach for the evaluation of the degradation processes. Polym Degrad Stab 105:257–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Bonaduce.

Additional information

Guest Editor: Rocco Mazzeo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaduce, I., Ribechini, E., Modugno, F. et al. Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects. Top Curr Chem (Z) 374, 6 (2016). https://doi.org/10.1007/s41061-015-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-015-0007-x

Keywords

Navigation