Skip to main content
Log in

Assessing the Thrombogenic Potential of Heart Valve Prostheses: An Approach for a Standardized In-Vitro Method

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Thrombogenic complications are still a main issue in the general performance of cardiovascular implants, especially heart valves. To date, the thrombogenic potential of those prostheses is pre-clinically assessed in time consuming animal studies with questionable evidence.

Methods

In this study, we present a new in-vitro method to assess and compare deficiencies of heart valve substitutes concerning their thrombogenic performance and locate initial clot formation under physiological conditions using porcine blood. Therefore, an athrombogenic pulse duplicator (THIA3) was developed that simulates the anatomic and hemodynamic conditions in the vicinity of the aortic valve. Validation of this tester was carried out with regard to hemodynamics, reproducibility and using positive and negative control valves and by comparison of clot locations with literature data from chronic animal trials with sheep using a St. Jude bileaflet valve.

Results

Validation of the tester showed quasi-physiological hemodynamics and reproducible clot formation. Identical clot formations were found comparing findings in vitro with chronic animal trials.

Conclusion

The THIA 3 has proven its suitability for valid, reproducible evaluation of thrombogenic potential of heart valves in a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arjunon, S., P. H. Ardana, N. Saikrishnan, S. Madhani, B. Foster, A. Glezer, and A. Yoganathan. Design of a pulsatile flow facility to evaluate thrombogenic potential of implantable cardic devices. JBME 137:045001, 2015.

    Google Scholar 

  2. Barstad, R. M., R. W. Stephens, M. J. Hamers, and K. S. Sakariassen. Protamine sulphate inhibits platelet membrane glycoprotein Ib-von willebrand factor activity. Thromb. Haemost. 83(2):334–337, 2000.

    Article  Google Scholar 

  3. Baumgartner, H. R. The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res. 5(2):167–179, 1973.

    Article  Google Scholar 

  4. Bellhouse, B. J., and F. H. Bellhouse. Mechanism of closure of the aortic valve. Nature 217(5123):86–87, 1968.

    Article  Google Scholar 

  5. Bellhouse, B. J., and K. G. Reid. Fluid mechanics of the aortic valve. Br Heart J. 31(3):391, 1969.

    Google Scholar 

  6. Bluestein, D. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices. Expert Rev. Med. Devices. 1(1):65–80, 2004.

    Article  Google Scholar 

  7. Bluestein, D., S. Einav, and M. J. Slepian. Device thrombogenicity emulation: a novel methodology for optimizing the thromboresistance of cardiovascular devices. J. Biomech. 46:338–344, 2013.

    Article  Google Scholar 

  8. Bluestein, D., W. Yin, K. Affeld, and J. Jesty. Flow-induced platelet activation in mechanical heart valves. J. Heart Valve Dis. 13(3):501–508, 2004.

    Google Scholar 

  9. Bodnar, E. The medtronic parallel valve and the lessons learned. J. Heart Valve Dis. 5(6):572–573, 1996.

    Google Scholar 

  10. Cannegieter, S. C., F. R. Rosendaal, and E. Briët. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641, 1994.

    Article  Google Scholar 

  11. Chandran, K. B. Role of computational simulations in heart valve dynamics and design of valvular prostheses. Cardiovasc. Eng. Technol. 1(1):18–38, 2010.

    Article  Google Scholar 

  12. Dodds, W. J. Joint report of the subcommittees on animal models of hemorrhagic and thrombotic diseases and on platelets. Thromb. Haemost. 48(1):106–107, 1982.

    Article  Google Scholar 

  13. Ellis, J. T., B. R. Travis, and A. P. Yoganathan. An in vitro study of the hinge and near-field forward flow dynamics of the St. Jude Medical Regent bileaflet mechanical heart valve. Ann. Biomed. Eng. 28(5):524–532, 2000.

    Article  Google Scholar 

  14. Grabowski, E. F., P. Didisheim, J. C. Lewis, J. T. Franta, and J. Q. Stropp. Platelet adhesion to foreign surfaces under controlled conditions of whole blood flow: human vs rabbit, dog, calf, sheep, pig, macaque, and baboon. Trans. Am. Soc. Artif. Intern. Organs. 23:141–151, 1977.

    Article  Google Scholar 

  15. Hoehle P. Towards the transferability of endovascular animal trials: Differences in coagulation and fibrolysis of common animal models towards the human“. RWTH Aachen University, October 2000.

  16. ISO 10993-4:2017. Biological evaluation of medical devices – Part 4: Selection of tests for interactions with blood.

  17. ISO 5840-1:2015. Cardiovascular implants—Cardiac valve prostheses—Part 1: general requirements.

  18. Kaeberich, A., I. Reindl, U. Raaz, L. Maegdefessel, A. Vogt, T. Linde, U. Steinseifer, E. Perzborn, B. Hauroeder, M. Buerke, K. Werdan, and A. Schlitt. Comparison of unfractionated heparin, low-molecular-weight heparin, low-dose and high-dose rivaroxaban in preventing thrombus formation on mechanical heart valves: results of an in vitro study. J. Thromb. Thrombolysis 32(4):417–425, 2011.

    Article  Google Scholar 

  19. Kamat, S. G., A. D. Michelson, S. E. Benoit, J. L. Moake, D. Rajasekhar, J. D. Hellums, M. H. Kroll, and A. I. Schafer. Fibrinolysis inhibits shear stress-induced platelet aggregation. Circulation 92(6):1399–1407, 1995.

    Article  Google Scholar 

  20. Keggen, L. A., M. M. Black, P. V. Lawford, D. R. Hose, and J. R. Strachan. The use of enzyme activated milk for in vitro simulation of prosthetic valve thrombosis. J. Heart Valve Dis. 5(1):74–83, 1996.

    Google Scholar 

  21. Kim, C. H., U. Steinseifer, and T. Schmitz-Rode. Thrombogenic evaluation of two mechanical heart valve prostheses using a new in-vitro test system. J. Heart Valve Dis. 18(2):207–213, 2009.

    Google Scholar 

  22. Kuetting, M., A. Sedaghat, M. Utzenrath, J. M. Sinning, C. Schmitz, J. Roggenkamp, N. Werner, T. Schmitz-Rode, and U. Steinseifer. In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses. J. Biomech. 47(5):957–965, 2014.

    Article  Google Scholar 

  23. Lindblad, B., T. W. Wakefield, W. M. Whitehouse, and J. C. Stanley. The effect of protamine sulfate on platelet function. Scand. J. Thorac. Cardiovasc. Surg. 22(1):55–59, 1988.

    Article  Google Scholar 

  24. Linde, T. Experimental and Numerical Evaluation of Thrombogenic Locations in Heart Valve Prostheses. Herzogenrath: Shaker, 2016.

    Google Scholar 

  25. Linde, T., K. F. Hamilton, C. Cuenca Navalon, T. Schmitz-Rode, and U. Steinseifer. Aortic root compliance influences hemolysis in mechanical heart valve prostheses: an in-vitro study. Int. J. Artif. Organs 35(7):495–502, 2012.

    Article  Google Scholar 

  26. Maegdefessel, L., T. Linde, F. Krapiec, K. Hamilton, U. Steinseifer, J. van Ryn, U. Raaz, M. Buerke, K. Werdan, and A. Schlitt. In vitro comparison of dabigatran, unfractionated heparin, and low-molecular-weight heparin in preventing thrombus formation on mechanical heart valves. Thromb. Res. 126(3):e196–e200, 2010. https://doi.org/10.1016/j.thromres.2010.06.011.

    Article  Google Scholar 

  27. Maegdefessel, L., T. Linde, T. Michel, K. F. Hamilton, U. Steinseifer, I. Friedrich, S. Schubert, B. Hauroeder, U. Raaz, M. Buerke, K. Werdan, and A. Schlitt. Argatroban and bivalirudin compared to unfractionated heparin in preventing thrombus formation on mechanical heart valves. Results of an in-vitro study. Thromb. Haemost. 101(6):1163–1169, 2009.

    Article  Google Scholar 

  28. Martin, A. J., and J. R. Christy. An in-vitro technique for assessment of thrombogenicity in mechanical prosthetic cardiac valves: evaluation with a range of valve types. J. Heart Valve Dis. 13(3):509–520, 2004.

    Google Scholar 

  29. Martin, A. J., and J. R. Christy. Evaluation of an in-vitro thrombosis assessment procedure by application to the medtronic parallel and St. Jude medical valves. J. Heart Valve Dis. 13(4):667–675, 2004.

    Google Scholar 

  30. Meuris, B., E. Verbeken, and W. Flameng. Mechanical valve thrombosis in a chronic animal model: differences between monoleaflet and bileaflet valves. J. Heart Valve Dis. 14(1):96–104, 2005.

    Google Scholar 

  31. Nielsen, V. G. Protamine enhances fibrinolysis by decreasing clot strength: role of tissue factor-initiated thrombin generation. Ann. Thorac. Surg. 81(5):1720–1727, 2006.

    Article  MathSciNet  Google Scholar 

  32. Paul, R., O. Marseille, E. Hintze, L. Huber, H. Schima, H. Reul, and G. Rau. In vitro thrombogenicity testing of artificial organs. Int. J. Artif. Organs 21(9):548–552, 1998.

    Article  Google Scholar 

  33. Reul, H., A. Vahlbruch, M. Giersiepen, T. Schmitz-Rode, V. Hirtz, and S. Effert. The geometry of the aortic root in health, at valve disease and after valve replacement. J. Biomech. 23(2):181–191, 1990.

    Article  Google Scholar 

  34. Salzman, E. W., R. D. Rosenberg, M. H. Smith, J. N. Lindon, and L. Favreau. Effect of heparin and heparin fractions on platelet aggregation. J. Clin. Invest. 65(1):64–73, 1980.

    Article  Google Scholar 

  35. Sonntag, S. J., T. A. S. Kaufmann, M. Büsen, M. Laumen, F. Graef, T. Linde, and U. Steinseifer. Numerical washout study of a pulsatile total artificial heart. Int. J. Artif. Organs. 37(3):241–252, 2014.

    Article  Google Scholar 

  36. Turitto, V. T., and H. R. Baumgartner. Platelet interaction with subendothelium in flowing rabbit blood: effect of blood shear rate. Microvasc. Res. 17(1):38–54, 1979.

    Article  Google Scholar 

  37. Weiss, H. J., H. R. Baumgartner, T. B. Tschopp, V. T. Turitto, and D. Cohen. Correction by factor viii of the impaired platelet adhesion to subendothelium in von willebrand disease. Blood 51(2):267–279, 1978.

    Article  Google Scholar 

  38. Wieting D W, Dynamic Flow Characteristics of Heart Valves, PhD thesis, University of Texas Austin, 1969.

Download references

Acknowledgments

Parts of this research were funded by the German Research Foundation (DFG, SCHM1307/5-1). Both first authors contributed equally to this publication.

Funding

This study was funded by the German Research Foundation (DFG: Grant Number DFG, SCHM1307/5-1).

Conflict of interest

All authors declare that they have no conflict of interest. This article does not contain any studies with animals performed by any of the authors.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. Presented animal data were taken from earlier studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Linde.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linde, T., Clauser, J., Meuris, B. et al. Assessing the Thrombogenic Potential of Heart Valve Prostheses: An Approach for a Standardized In-Vitro Method. Cardiovasc Eng Tech 10, 216–224 (2019). https://doi.org/10.1007/s13239-019-00408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-019-00408-3

Keywords

Navigation