Skip to main content

Advertisement

Log in

Current Challenges and Emergent Technologies for Manufacturing Artificial Right Ventricle to Pulmonary Artery (RV-PA) Cardiac Conduits

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Despite advances in modern surgery, congenital heart disease remains a medical challenge and major cause of infant mortality. Valved conduits are routinely used to surgically correct blood flow in hearts with congenital malformations by connecting the right ventricle to the pulmonary artery (RV-PA). This review explores the current range of RV-PA conduits and describes their strengths and disadvantages. Homografts and xenografts are currently the primary treatment modalities, however both graft types have limited biocompatibility and durability, and present a disease transmission risk. Structural deterioration of a replaced valve can lead to pulmonary valve stenosis and/or regurgitation. Moreover, as current RV-PA conduits are of a fixed size, multiple subsequent operations are required to upsize a valved conduit over a patient’s lifetime. We assess emerging biomaterials and tissue engineering techniques with a view to replicating the features of native tissues, including matching the durability and elasticity required for normal fluid flow dynamics. The benefits and limitations of incorporating cellular elements within the biomaterial are also discussed. Present review demonstrates that an alignment of medical and engineering disciplines will be ultimately required to produce a biocompatible and high-functioning artificial conduit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

BJV:

Bovine jugular vein

CHD:

Congenital heart disease

ECM:

Extra cellular matrix

PCL:

Poly(ɛ-caprolactone)

PHB:

Poly(hydroxybutyrate) or poly(hydroxybutyric acid)

PHBV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PLA:

Poly(lactic acid)

PLGA:

Poly(lactic-co-glycolic acid)

PPC:

Poly(propylene carbonate)

PPF:

Poly(propylene fumarate)

RV-PA:

Right ventricle to pulmonary artery

TE:

Tissue engineering

References

  1. Akintewe, O. O., et al. Design approaches to myocardial and vascular tissue engineering. Annu. Rev. Biomed. Eng. 19(1):389–414, 2017.

    Article  Google Scholar 

  2. Avolio, E., M. Caputo, and P. Madeddu. Stem cell therapy and tissue engineering for correction of congenital heart disease. Front. Cell Dev. Biol. 3:39, 2015.

    Article  Google Scholar 

  3. Banerjee, R., et al. Comparison of pulmonary arterial wall properties between a congenital heart disease patient and a normal subject using in vivo pressure–diameter measurements: A feasibility study. Prog. Pediatr. Cardiol. 41:97–102, 2016.

    Article  Google Scholar 

  4. Belli, E., et al. The performance of Hancock porcine-valved Dacron conduit for right ventricular outflow tract reconstruction. Ann. Thorac. Surg. 89(1):152–158, 2010.

    Article  Google Scholar 

  5. Bennink, G., et al. A novel restorative pulmonary valved conduit in a chronic sheep model: mid-term hemodynamic function and histologic assessment. J. Thorac. Cardiovasc. Surg. 155(6):2591–2601, 2018.

    Article  Google Scholar 

  6. Bockeria, L. A., et al. Total cavopulmonary connection with a new bioabsorbable vascular graft: First clinical experience. J. Thorac. Cardiovasc. Surg. 153(6):1542–1550, 2017.

    Article  Google Scholar 

  7. Boethig, D., et al. Mid term course after pediatric right ventricular outflow tract reconstruction: a comparison of homografts, porcine xenografts and Contegras. Eur. J. Cardiothorac. Surg. 27(1):58–66, 2005.

    Article  Google Scholar 

  8. Bove, E. L., et al. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock–Taussig and right ventricle–pulmonary artery shunts for hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 136(2):312–320.e2, 2008.

    Article  Google Scholar 

  9. Brennan, M. P., et al. Tissue engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann. Surg. 248(3):370–377, 2008.

    Google Scholar 

  10. Brown, J. W., et al. Valved bovine jugular vein conduits for right ventricular outflow tract reconstruction in children: an attractive alternative to pulmonary homograft. Ann. Thorac. Surg. 82(3):909–916, 2006.

    Article  Google Scholar 

  11. Christenson, J. T., et al. Homografts and xenografts for right ventricular outflow tract reconstruction: long-term results. Ann. Thorac. Surg. 90(4):1287–1293, 2010.

    Article  Google Scholar 

  12. Crescenzo, D. G., et al. Human cryopreserved homografts: electron microscopic analysis of cellular injury. Ann. Thorac. Surg. 55(1):25–31, 1993.

    Article  MathSciNet  Google Scholar 

  13. Dhandayuthapani, B., et al. Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011

  14. Doost, S. N., et al. Heart blood flow simulation: a perspective review. BioMed. Eng. OnLine 15(1):101, 2016.

    Article  Google Scholar 

  15. Duan, B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann. Biomed. Eng. 45(1):195–209, 2016.

    Article  Google Scholar 

  16. Duan, B., et al. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10(5):1836–1846, 2014.

    Article  Google Scholar 

  17. Dunne, B., et al. The freestyle valve as a right ventricle to pulmonary artery conduit. A systematic review and meta-analysis. Heart Lung Vessels 7(4):304–310, 2015.

    Google Scholar 

  18. Fung, Y., K. Fronek, and P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. Heart Circ. Physiol. 237(5):H620–H631, 1979.

    Article  Google Scholar 

  19. Hibino, N., et al. Late-term results of tissue-engineered vascular grafts in humans. J. Thorac. Cardiovasc. Surg. 139(2):431–436.e2, 2010.

    Article  Google Scholar 

  20. Hinderer, S., et al. Engineering of a bio-functionalized hybrid off-the-shelf heart valve. Biomaterials 35(7):2130–2139, 2014.

    Article  Google Scholar 

  21. Hoerstrup, S. P., et al. Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann. Thorac. Surg. 74(1):46–52, 2002.

    Article  Google Scholar 

  22. Horch, R. E. Future perspectives in tissue engineering:‘Tissue Engineering’review series. J. Cell. Mol. Med. 10(1):4–6, 2006.

    Article  Google Scholar 

  23. Hospital, L.S.P.C.s. Pulmonary Atresia (PA). http://www.stanfordchildrens.org/en/topic/default?id=pulmonary-atresia-pa-90-P01809. Accessed Mar 13 2018

  24. Iyer, K. S. The Contegra bovine jugular valved conduit: Living up to expectations? Ann. Pediatr. Cardiol. 5(1):34–35, 2012.

    Google Scholar 

  25. Jackman, C. P., et al. Human cardiac tissue engineering: from pluripotent stem cells to heart repair. Curr. Opin. Chem. Eng. 7:57–64, 2015.

    Article  Google Scholar 

  26. Jung, J. P., et al. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices. Sci. Rep. 5:18705, 2015.

    Article  Google Scholar 

  27. Kasparian, N. A., D. S. Winlaw, and G. F. Sholler. “Congenital heart health”: how psychological care can make a difference. Med. J. Aust. 205(3):104–107, 2016.

    Article  Google Scholar 

  28. Kim, J. E., S. H. Kim, and Y. Jung. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng. Regen. Med. 13(6):636–646, 2016.

    Article  Google Scholar 

  29. Kirklin, J. W., et al. Intermediate-term fate of cryopreserved allograft and xenograft valved conduits. Ann. Thorac. Surg. 44(6):598–606, 1987.

    Article  Google Scholar 

  30. Klouda, L., et al. Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds. J. Mater. Sci. 19(3):1137–1144, 2008.

    Google Scholar 

  31. Kluin, J., et al. In situ heart valve tissue engineering using a bioresorbable elastomeric implant–From material design to 12 months follow-up in sheep. Biomaterials 125:101–117, 2017.

    Article  Google Scholar 

  32. Loh, Q. L., and C. Choong. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. B 19(6):485–502, 2013.

    Article  Google Scholar 

  33. Manavitehrani, I., et al. Reinforced poly (propylene carbonate) composite with enhanced and tunable characteristics, an alternative for poly (lactic acid). ACS Appl. Mater. Interfaces 7(40):22421–22430, 2015.

    Article  Google Scholar 

  34. Manavitehrani, I., et al. Biomedical applications of biodegradable polyesters. Polymers 8(1):20, 2016.

    Article  Google Scholar 

  35. Manavitehrani, I., et al. Fabrication of a biodegradable implant with tunable characteristics for bone implant applications. Biomacromolecules 18(6):1736–1746, 2017.

    Article  Google Scholar 

  36. Marelli, A.J., et al., Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation, CIRCULATIONAHA-113.008396, 2014

  37. Marsden, A. L., et al. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137(2):394–403, 2009.

    Article  Google Scholar 

  38. Matsumura, G., et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108(14):1729–1734, 2003.

    Article  Google Scholar 

  39. Matsumura, G., et al. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 24(13):2303–2308, 2003.

    Article  Google Scholar 

  40. Mei, N., et al. Biocompatibility of poly(ε-caprolactone) scaffold modified by Chitosan—the fibroblasts proliferation in vitro. J. Biomater. Appl. 19(4):323–339, 2005.

    Article  Google Scholar 

  41. Mery, C. M., et al. Risk factors for development of endocarditis and reintervention in patients undergoing right ventricle to pulmonary artery valved conduit placement. J Thorac Cardiovasc Surg 151(2):432–441.e2, 2016.

    Article  MathSciNet  Google Scholar 

  42. Mi, H.-Y., et al. Approaches to fabricating multiple-layered vascular scaffolds using hybrid electrospinning and thermally induced phase separation methods. Ind. Eng. Chem. Res. 55(4):882–892, 2016.

    Article  Google Scholar 

  43. Morray, B. H., et al. Multicenter experience evaluating transcatheter pulmonary valve replacement in bovine jugular vein (Contegra) right ventricle to pulmonary artery conduits. Circulation 10(6):e004914, 2017.

    Google Scholar 

  44. Morris, P. D., et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102(1):18–28, 2016.

    Article  Google Scholar 

  45. Müller-Schweinitzer, E. Cryopreservation of vascular tissues. Organogenesis 5(3):97–104, 2009.

    Article  Google Scholar 

  46. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773–785, 2014.

    Article  Google Scholar 

  47. Murphy, C.M., et al. Cell-scaffold interactions in the bone tissue engineering triad. 2013

  48. Nair, L. S., and C. T. Laurencin. Biodegradable polymers as biomaterials. Progress in Polymer Science (Oxford) 32:762–798, 2007.

    Article  Google Scholar 

  49. Naito, Y., et al. Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. J. Thorac. Cardiovasc. Surg. 125(2):419–420, 2003.

    Article  Google Scholar 

  50. Niemantsverdriet, M., et al. Determinants of right ventricular outflow tract conduit longevity: a multinational analysis. Congenital Heart Disease 3(3):176–184, 2008.

    Article  Google Scholar 

  51. Norotte, C., et al. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917, 2009.

    Article  Google Scholar 

  52. Ogden, R. W. Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. Biomechanics of Soft Tissue in Cardiovascular Systems, New York: Springer, 2003, pp. 65–108.

    Chapter  Google Scholar 

  53. Ogle, B. M., et al. Distilling complexity to advance cardiac tissue engineering. Sci. Transl. Med. 8(342):342ps13, 2016.

    Article  Google Scholar 

  54. Pagliari, S., et al. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds. Front. Physiol. 5:210, 2014.

    Google Scholar 

  55. Pok, S., et al. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater. 9(3):5630–5642, 2013.

    Article  Google Scholar 

  56. Pok, S., et al. Full-thickness heart repair with an engineered multilayered myocardial patch in rat model. Adv. Healthc. Mater. 6(5):1600549, 2017.

    Article  Google Scholar 

  57. Rastan, A. J., et al. Bovine jugular vein conduit for right ventricular outflow tract reconstruction: evaluation of risk factors for mid-term outcome. Ann. Thorac. Surg. 82(4):1308–1315, 2006.

    Article  Google Scholar 

  58. Roh, J. D., et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc. Natl. Acad. Sci. USA 107(10):4669–4674, 2010.

    Article  Google Scholar 

  59. Ross, D., and J. Somerville. Correction of pulmonary atresia with a homograft aortic valve. Lancet 288(7479):1446–1447, 1966.

    Article  Google Scholar 

  60. Samyn, M. M., and J. F. LaDisa. Novel applications of cardiovascular magnetic resonance imaging-based computational fluid dynamics modeling in pediatric cardiovascular and congenital heart disease. In: Assessment of cellular and organ function and dysfunction using direct and derived MRI methodologies, edited by C. Constantinides. Rijeka: InTech, 2016.

    Google Scholar 

  61. Sankaran, K. K., U. M. Krishnan, and S. Sethuraman. Axially aligned 3D nanofibrous grafts of PLA–PCL for small diameter cardiovascular applications. J. Biomater. Sci. Polym. Ed. 25(16):1791–1812, 2014.

    Article  Google Scholar 

  62. Schaefermeier, P., et al. Design and fabrication of three-dimensional scaffolds for tissue engineering of human heart valves. Eur. Surg. Res. 42(1):49–53, 2009.

    Article  Google Scholar 

  63. Sekarski, N., et al. Right ventricular outflow tract reconstruction with the bovine jugular vein graft: 5 years’ experience with 133 patients. Ann. Thorac. Surg. 84(2):599–605, 2007.

    Article  Google Scholar 

  64. Shinkawa, T., et al. Outcome of right ventricle to pulmonary artery conduit for biventricular repair. Ann. Thorac. Surg. 99(4):1357–1366, 2015.

    Article  Google Scholar 

  65. Shinoka, T. What is the best material for extracardiac Fontan operation? J. Thorac. Cardiovasc. Surg. 153(6):1551–1552, 2017.

    Article  Google Scholar 

  66. Shin’oka, T., Y. Imai, and Y. Ikada. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med. 344(7):532–533, 2001.

    Article  Google Scholar 

  67. Shinoka, T., et al. Tissue engineering heart valves: Valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60:S513–S516, 1995.

    Article  Google Scholar 

  68. Shinoka, T., et al. Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg. 115(3):536–546, 1998.

    Article  Google Scholar 

  69. Shinoka, T., et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J. Thorac. Cardiovasc. Surg. 129(6):1330–1338, 2005.

    Article  Google Scholar 

  70. Siallagan, D., et al. Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics. J. Thorac. Cardiovasc. Surg. 155(4):1734–1742, 2018.

    Article  Google Scholar 

  71. Skardal, A., et al. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 16(8):2675–2685, 2010.

    Article  Google Scholar 

  72. Sodian, R., et al. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J. 48(1):12–16, 2002.

    Article  Google Scholar 

  73. Soerensen, D. D., et al. Introduction of a new optimized total cavopulmonary connection. Ann. Thorac. Surg. 83(6):2182–2190, 2007.

    Article  Google Scholar 

  74. Soliman, O. I. I., et al. Midterm performance of a novel restorative pulmonary valved conduit: preclinical results. EuroIntervention 13(12):e1418–e1427, 2017.

    Article  Google Scholar 

  75. Stanton, M. M., J. Samitier, and S. Sanchez. Bioprinting of 3D hydrogels. Lab on a Chip 15(15):3111–3115, 2015.

    Article  Google Scholar 

  76. Stevens, K. R., et al. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Natl. Acad. Sci. 106(39):16568–16573, 2009.

    Article  Google Scholar 

  77. Stock, U. A., et al. Tissue-engineered valved conduits in the pulmonary circulation. J. Thorac Cardiovasc. Surg. 119(4):732–740, 2000.

    Article  Google Scholar 

  78. Sugiura, T., et al. Novel bioresorbable vascular graft with sponge-type scaffold as a small-diameter arterial graft. Ann. Thorac. Surg. 102(3):720–727, 2016.

    Article  Google Scholar 

  79. Takahashi, Y., and Y. Tabata. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J. Biomater. Sci. Polym. Ed. 15(1):41–57, 2004.

    Article  Google Scholar 

  80. Tan, Y., et al. 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6(2):024111, 2014.

    Article  Google Scholar 

  81. Tang, E., and A. P. Yoganathan. Optimizing hepatic flow distribution with the Fontan Y-graft: lessons from computational simulations. J. Thorac. Cardiovasc. Surg. 149(1):255–256, 2014.

    Article  Google Scholar 

  82. Tang, X., et al. Chapter 21—polymeric biomaterials in tissue engineering and regenerative medicine A2—Kumbar, Sangamesh G. In: Natural and Synthetic Biomedical Polymers, edited by C. T. Laurencin, and M. Deng. Oxford: Elsevier, 2014, pp. 351–371.

    Chapter  Google Scholar 

  83. Tresoldi, C., et al. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach. Comput. Methods Biomech. Biomed. Eng. 20(10):1077–1088, 2017.

    Article  Google Scholar 

  84. Triedman, J. K., and J. W. Newburger. Trends in congenital heart disease. Next Decade 133(25):2716–2733, 2016.

    Google Scholar 

  85. Wang, Z., et al. Effects of collagen deposition on passive and active mechanical properties of large pulmonary arteries in hypoxic pulmonary hypertension. Biomech Model. Mechanobiol. 12(6):1115–1125, 2013.

    Article  Google Scholar 

  86. Wells, W. J., et al. Homograft conduit failure in infants is not due to somatic outgrowth. J. Thorac. Cardiovasc. Surg. 124(1):88–96, 2002.

    Article  MathSciNet  Google Scholar 

  87. Wise, S. G., et al. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 7(1):295–303, 2011.

    Article  Google Scholar 

  88. Wissing, T. B., et al. Biomaterial-driven in situ cardiovascular tissue engineering—a multi-disciplinary perspective. NPJ Regen. Med. 2(1):18, 2017.

    Article  Google Scholar 

  89. Xenos, M., et al. Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J. Biomech. 43(12):2400–2409, 2010.

    Article  Google Scholar 

  90. Xu, C., et al. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol. Bioeng. 109(12):3152–3160, 2012.

    Article  Google Scholar 

  91. Yang, W., et al. Optimization of a Y-graft design for improved hepatic flow distribution in the Fontan circulation. J. Biomech. Eng. 135(1):011002-011002-12, 2012.

    Google Scholar 

  92. Yang, W., et al. Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 149(1):247–255, 2015.

    Article  Google Scholar 

  93. Zelicourt, D. D. A mechanical fluid assessment of anatomical models of the total cavopulmonary connection (TCPC) (MS thesis). Atlanta: Ga Inst Technol, 2004.

    Google Scholar 

  94. Zermatten, E., et al. Micro-computed tomography based computational fluid dynamics for the determination of shear stresses in scaffolds within a perfusion bioreactor. Ann. Biomed. Eng. 42(5):1085–1094, 2014.

    Article  Google Scholar 

  95. Zhang, Y. S., et al. 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45(1):148–163, 2017.

    Article  Google Scholar 

Download references

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

Authors declare no funding for preparation of this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Manavitehrani.

Additional information

Associate Editors Frank Gijsen and Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manavitehrani, I., Ebrahimi, P., Yang, I. et al. Current Challenges and Emergent Technologies for Manufacturing Artificial Right Ventricle to Pulmonary Artery (RV-PA) Cardiac Conduits. Cardiovasc Eng Tech 10, 205–215 (2019). https://doi.org/10.1007/s13239-019-00406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-019-00406-5

Keywords

Navigation