Skip to main content
Log in

Quorum Sensing Circuits in the Communicating Mechanisms of Bacteria and Its Implication in the Biosynthesis of Bacteriocins by Lactic Acid Bacteria: a Review

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

It is well established that bacteria communicate between each other by using different mechanisms; among which, quorum sensing (QS) is the best known one. Indeed, intra- and intercellular communications of microorganisms, as well as the regulation of metabolism and reaction to the surrounding environmental conditions, are carried out by using different signaling molecules. N-Acyl homoserine lactones control the QS in Gram-negative bacteria, while Gram-positive bacteria use communicating peptides. These compounds, by diffusing through the bacterial membrane cell from the extracellular medium, directly or indirectly control the expression of specific genes that induce bacteria to react to their surrounding environment and stressing agents. In the case of lactic acid bacteria and bifidobacteria which are widely used in the dairy industry, QS is of extreme importance for their survival and the extent of their activity in the dairy matrix. Moreover, it is also via QS that these bacteria synthesize various antimicrobial agents such as bacteriocins. The aim of this review is to highlight the quorum sensing circuits involved in the communicating mechanisms of bacteria with emphasis on current applications of QS in lactic acid bacteria. More particularly, the implication of QS in the biosynthesis of bacteriocins by lactic acid bacteria will be detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254(1):1–11. https://doi.org/10.1111/j.1574-6968.2005.00001.x

    Article  CAS  PubMed  Google Scholar 

  2. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6(40):959–978. https://doi.org/10.1098/rsif.2009.0203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33. https://doi.org/10.1016/j.tim.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  4. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125(2):237–246. https://doi.org/10.1016/j.cell.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  5. De Angelis M, Di Cagno R, Gallo G, Curci M, Siragusa S, Crecchio C, Parente E, Gobbetti M (2007) Molecular and functional characterization of Lactobacillus sanfranciscensis strains isolated from sourdoughs. Int J Food Microbiol 114(1):69–82. https://doi.org/10.1016/j.ijfoodmicro.2006.10.036

    Article  CAS  PubMed  Google Scholar 

  6. Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C, Horvath P, Boyaval P, Hols P (2010) A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192(5):1444–1454. https://doi.org/10.1128/jb.01251-09

    Article  CAS  PubMed  Google Scholar 

  7. Kleerebezem M (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25(9):1405–1414. https://doi.org/10.1016/j.peptides.2003.10.021

    Article  CAS  PubMed  Google Scholar 

  8. Calo-Mata P, Arlindo S, Boehme K, de Miguel T, Pascoal A, Barros-Velazquez J (2008) Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioprocess Technol 1(1):43–63. https://doi.org/10.1007/s11947-007-0021-2

    Article  Google Scholar 

  9. Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Annu Rev Microbiol 31:549–595. https://doi.org/10.1146/annurev.mi.31.100177.003001

    Article  CAS  PubMed  Google Scholar 

  10. Ramsay JP, Sullivan JT, Jambari N, Ortori CA, Heeb S, Williams P, Barrett DA, Lamont IL, Ronson CW (2009) A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol 73(6):1141–1155. https://doi.org/10.1111/j.1365-2958.2009.06843.x

    Article  CAS  PubMed  Google Scholar 

  11. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10(8):365–370

    Article  CAS  PubMed  Google Scholar 

  12. March JC, Bentley WE (2004) Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotechnol 15(5):495–502. https://doi.org/10.1016/j.copbio.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  13. Roy V, Adams BL, Bentley WE (2011) Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzym Microb Technol 49(2):113–123. https://doi.org/10.1016/j.enzmictec.2011.06.001

    Article  CAS  Google Scholar 

  14. Di Cagno R, De Angelis M, Calasso M, Gobbetti M (2011) Proteomics of the bacterial cross-talk by quorum sensing. J Proteome 74(1):19–34. https://doi.org/10.1016/j.jprot.2010.09.003

    Article  CAS  Google Scholar 

  15. Skandamis PN, Nychas GJ (2012) Quorum sensing in the context of food microbiology. Appl Environ Microbiol 78(16):5473–5482. https://doi.org/10.1128/aem.00468-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blana VA, Nychas GJ (2014) Presence of quorum sensing signal molecules in minced beef stored under various temperature and packaging conditions. Int J Food Microbiol 173:1–8. https://doi.org/10.1016/j.ijfoodmicro.2013.11.028

    Article  CAS  PubMed  Google Scholar 

  17. Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can't talk now - gone to lunch. Curr Opin Microbiol 5(2):216–222

    Article  CAS  PubMed  Google Scholar 

  18. Brackman G, Coenye T (2015) Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des 21(1):5–11

    Article  CAS  PubMed  Google Scholar 

  19. Defoirdt T, Brackman G, Coenye T (2013) Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol 21(12):619–624. https://doi.org/10.1016/j.tim.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  20. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224–245. https://doi.org/10.1016/j.biotechadv.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  21. Thiel V, Kunze B, Verma P, Wagner-Dobler I, Schulz S (2009) New structural variants of homoserine lactones in bacteria. Chembiochem 10(11):1861–1868. https://doi.org/10.1002/cbic.200900126

    Article  CAS  PubMed  Google Scholar 

  22. Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86(5):1267–1279. https://doi.org/10.1007/s00253-010-2521-7

    Article  CAS  PubMed  Google Scholar 

  23. Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186(20):6902–6914. https://doi.org/10.1128/jb.186.20.6902-6914.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Casino P, Rubio V, Marina A (2010) The mechanism of signal transduction by two-component systems. Curr Opin Struct Biol 20(6):763–771. https://doi.org/10.1016/j.sbi.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  25. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564. https://doi.org/10.1146/annurev.genet.42.110807.091640

    Article  CAS  PubMed  Google Scholar 

  26. Skaugen M, Andersen EL, Christie VH, Nes IF (2002) Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in Lactobacillus sakei L45. Appl Environ Microbiol 68(2):720–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64(1):15–21. https://doi.org/10.1016/S0168-1656(98)00100-X

    Article  CAS  Google Scholar 

  28. Ibrahim M, Guillot A, Wessner F, Algaron F, Besset C, Courtin P, Gardan R, Monnet V (2007) Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? J Bacteriol 189(24):8844–8854. https://doi.org/10.1128/jb.01057-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, Fontaine L, Hols P, Leblond-Bourget N, Monnet V, Gardan R (2011) Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol Microbiol 80(4):1102–1119. https://doi.org/10.1111/j.1365-2958.2011.07633.x

    Article  CAS  PubMed  Google Scholar 

  30. Fontaine L, Boutry C, Guedon E, Guillot A, Ibrahim M, Grossiord B, Hols P (2007) Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J Bacteriol 189(20):7195–7205. https://doi.org/10.1128/jb.00966-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin B, Quentin Y, Fichant G, Claverys JP (2006) Independent evolution of competence regulatory cascades in streptococci? Trends Microbiol 14(8):339–345. https://doi.org/10.1016/j.tim.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  32. Mashburn-Warren L, Morrison DA, Federle MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78(3):589–606. https://doi.org/10.1111/j.1365-2958.2010.07361.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15(12):1468–1480. https://doi.org/10.1101/gad.899601

    Article  CAS  PubMed  Google Scholar 

  34. Sela S, Frank S, Belausov E, Pinto R (2006) A mutation in the luxS gene influences Listeria monocytogenes biofilm formation. Appl Environ Microbiol 72(8):5653–5658. https://doi.org/10.1128/aem.00048-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188(1):305–316. https://doi.org/10.1128/jb.188.1.305-316.2006

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sperandio V, Torres AG, Giron JA, Kaper JB (2001) Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183(17):5187–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun J, Daniel R, Wagner-Dobler I, Zeng AP (2004) Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4:36. https://doi.org/10.1186/1471-2148-4-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lebeer S, De Keersmaecker SC, Verhoeven TL, Fadda AA, Marchal K, Vanderleyden J (2007) Functional analysis of luxS in the probiotic strain Lactobacillus rhamnosus GG reveals a central metabolic role important for growth and biofilm formation. J Bacteriol 189(3):860–871. https://doi.org/10.1128/jb.01394-06

    Article  CAS  PubMed  Google Scholar 

  39. Buck BL, Azcarate-Peril MA, Klaenhammer TR (2009) Role of autoinducer-2 on the adhesion ability of Lactobacillus acidophilus. J Appl Microbiol 107(1):269–279. https://doi.org/10.1111/j.1365-2672.2009.04204.x

    Article  CAS  PubMed  Google Scholar 

  40. Moslehi-Jenabian S, Vogensen FK, Jespersen L (2011) The quorum sensing luxS gene is induced in Lactobacillus acidophilus NCFM in response to Listeria monocytogenes. Int J Food Microbiol 149(3):269–273. https://doi.org/10.1016/j.ijfoodmicro.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  41. Man L-L, Meng X-C, Zhao R-H (2012) Induction of plantaricin MG under co-culture with certain lactic acid bacterial strains and identification of LuxS mediated quorum sensing system in Lactobacillus plantarum KLDS1.0391. Food Control 23(2):462–469. https://doi.org/10.1016/j.foodcont.2011.08.015

    Article  CAS  Google Scholar 

  42. Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci U S A 102(2):309–314. https://doi.org/10.1073/pnas.0408639102

    Article  CAS  PubMed  Google Scholar 

  43. Kendall MM, Rasko DA, Sperandio V (2007) Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli. Infect Immun 75(10):4875–4884. https://doi.org/10.1128/iai.00550-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50(5):1477–1491

    Article  CAS  PubMed  Google Scholar 

  45. West SA, Winzer K, Gardner A, Diggle SP (2012) Quorum sensing and the confusion about diffusion. Trends Microbiol 20(12):586–594. https://doi.org/10.1016/j.tim.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  46. Maldonado-Barragan A, Ruiz-Barba JL, Jimenez-Diaz R (2009) Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. Int J Food Microbiol 130(1):35–42. https://doi.org/10.1016/j.ijfoodmicro.2008.12.033

    Article  CAS  PubMed  Google Scholar 

  47. Zhang LH (2003) Quorum quenching and proactive host defense. Trends Plant Sci 8(5):238–244. https://doi.org/10.1016/s1360-1385(03)00063-3

    Article  CAS  PubMed  Google Scholar 

  48. Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14(9):17477–17500. https://doi.org/10.3390/ijms140917477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43 Spec No:101-109

  50. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47(3):849–860

    Article  PubMed  Google Scholar 

  51. Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S, Weiland N, Streit WR (2011) BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J Biotechnol 155(1):86–94. https://doi.org/10.1016/j.jbiotec.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  52. Laughton JM, Devillard E, Heinrichs DE, Reid G, McCormick JK (2006) Inhibition of expression of a staphylococcal superantigen-like protein by a soluble factor from Lactobacillus reuteri. Microbiol 152 (Pt 4:1155–1167. https://doi.org/10.1099/mic.0.28654-0

    Article  CAS  Google Scholar 

  53. Medellin-Pena MJ, Wang H, Johnson R, Anand S, Griffiths MW (2007) Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Appl Environ Microbiol 73(13):4259–4267. https://doi.org/10.1128/aem.00159-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ammor MS, Michaelidis C, Nychas GJ (2008) Insights into the role of quorum sensing in food spoilage. J Food Prot 71(7):1510–1525

    Article  CAS  PubMed  Google Scholar 

  55. Rossi F, Marzotto M, Cremonese S, Rizzotti L, Torriani S (2013) Diversity of Streptococcus thermophilus in bacteriocin production; inhibitory spectrum and occurrence of thermophilin genes. Food Microbiol 35(1):27–33. https://doi.org/10.1016/j.fm.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  56. De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26(7):666–675. https://doi.org/10.1016/j.fm.2009.07.012

    Article  CAS  PubMed  Google Scholar 

  57. Di Cagno R, De Angelis M, Coda R, Minervini F, Gobbetti M (2009) Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli. Res Microbiol 160(5):358–366. https://doi.org/10.1016/j.resmic.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  58. Park H, Yeo S, Ji Y, Lee J, Yang J, Park S, Shin H, Holzapfel W (2014) Autoinducer-2 associated inhibition by Lactobacillus sakei NR28 reduces virulence of enterohaemorrhagic Escherichia coli O157:H7. Food Control 45:62–69. https://doi.org/10.1016/j.foodcont.2014.04.024

    Article  CAS  Google Scholar 

  59. Marco ML, Tachon S (2013) Environmental factors influencing the efficacy of probiotic bacteria. Curr Opin Biotechnol 24(2):207–213. https://doi.org/10.1016/j.copbio.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  60. Saad N, Delattre C, Urdaci M, Schmitter JM, Bressollier P (2013) An overview of the last advances in probiotic and prebiotic field. LWT Food Sci Technol 50(1):1–16. https://doi.org/10.1016/j.lwt.2012.05.014

    Article  CAS  Google Scholar 

  61. Yuan J, Wang B, Sun Z, Bo X, Yuan X, He X, Zhao H, Du X, Wang F, Jiang Z, Zhang L, Jia L, Wang Y, Wei K, Wang J, Zhang X, Sun Y, Huang L, Zeng M (2008) Analysis of host-inducing proteome changes in Bifidobacterium longum NCC2705 grown in vivo. J Proteome Res 7(1):375–385. https://doi.org/10.1021/pr0704940

    Article  CAS  PubMed  Google Scholar 

  62. Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104(18):7617–7621. https://doi.org/10.1073/pnas.0700440104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie Y, An H, Hao Y, Qin Q, Huang Y, Luo Y, Zhang L (2011) Characterization of an anti-Listeria bacteriocin produced by Lactobacillus plantarum LB-B1 isolated from koumiss, a traditionally fermented dairy product from China. Food Control 22(7):1027–1031. https://doi.org/10.1016/j.foodcont.2010.12.007

    Article  CAS  Google Scholar 

  64. Gong HS, Meng XC, Wang H (2010) Mode of action of plantaricin MG, a bacteriocin active against Salmonella typhimurium. J Basic Microbiol 50(Suppl 1):S37–S45. https://doi.org/10.1002/jobm.201000130

    Article  PubMed  Google Scholar 

  65. Zouhir A, Hammami R, Fliss I, Hamida JB (2010) A new structure-based classification of gram-positive bacteriocins. Protein J 29(6):432–439. https://doi.org/10.1007/s10930-010-9270-4

    Article  CAS  PubMed  Google Scholar 

  66. Nissen-Meyer J, Rogne P, Oppegard C, Haugen HS, Kristiansen PE (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10(1):19–37

    Article  CAS  PubMed  Google Scholar 

  67. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788. https://doi.org/10.1038/nrmicro1273

    Article  CAS  PubMed  Google Scholar 

  68. Hata T, Tanaka R, Ohmomo S (2010) Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1. Int J Food Microbiol 137(1):94–99. https://doi.org/10.1016/j.ijfoodmicro.2009.10.021

    Article  CAS  PubMed  Google Scholar 

  69. Cheikhyoussef A, Pogori N, Chen W, Zhang H (2008) Antimicrobial proteinaceous compounds obtained from bifidobacteria: from production to their application. Int J Food Microbiol 125(3):215–222. https://doi.org/10.1016/j.ijfoodmicro.2008.03.012

    Article  CAS  PubMed  Google Scholar 

  70. McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25(3):285–308

    Article  CAS  PubMed  Google Scholar 

  71. Eijsink VG, Axelsson L, Diep DB, Havarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81(1–4):639–654

    Article  CAS  PubMed  Google Scholar 

  72. Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML (2007) Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol 62:191–234. https://doi.org/10.1016/s0065-2164(07)62007-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A (2007) Cell-cell communication in food related bacteria. Int J Food Microbiol 120(1–2):34–45. https://doi.org/10.1016/j.ijfoodmicro.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  74. Messaoudi S, Manai M, Kergourlay G, Prévost H, Connil N, Chobert JM, Dousset X (2013) Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol 36(2):296–304. https://doi.org/10.1016/j.fm.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  75. Galvez A, Lopez RL, Abriouel H, Valdivia E, Omar NB (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol 28(2):125–152. https://doi.org/10.1080/07388550802107202

    Article  CAS  PubMed  Google Scholar 

  76. Patton GC, van der Donk WA (2005) New developments in lantibiotic biosynthesis and mode of action. Curr Opin Microbiol 8(5):543–551. https://doi.org/10.1016/j.mib.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  77. Alkhatib Z, Abts A, Mavaro A, Schmitt L, Smits SH (2012) Lantibiotics: how do producers become self-protected? J Biotechnol 159(3):145–154. https://doi.org/10.1016/j.jbiotec.2012.01.032

    Article  CAS  PubMed  Google Scholar 

  78. Cooper LE, Li B, van der Donk WA (2010) Biosynthesis and mode of action of lantibiotics. In: Comprehensive natural products II: chemistry and biology, vol 5, pp 217–256

    Chapter  Google Scholar 

  79. Chandrapati S, O'Sullivan DJ (2002) Characterization of the promoter regions involved in galactose- and nisin-mediated induction of the nisA gene in Lactococcus lactis ATCC 11454. Mol Microbiol 46(2):467–477

    Article  CAS  PubMed  Google Scholar 

  80. Dufour A, Hindre T, Haras D, Le Pennec JP (2007) The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 31(2):134–167. https://doi.org/10.1111/j.1574-6976.2006.00045.x

    Article  CAS  PubMed  Google Scholar 

  81. Hindre T, Le Pennec JP, Haras D, Dufour A (2004) Regulation of lantibiotic lacticin 481 production at the transcriptional level by acid pH. FEMS Microbiol Lett 231(2):291–298. https://doi.org/10.1016/s0378-1097(04)00010-2

    Article  CAS  PubMed  Google Scholar 

  82. Wescombe PA, Burton JP, Cadieux PA, Klesse NA, Hyink O, Heng NC, Chilcott CN, Reid G, Tagg JR (2006) Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie Van Leeuwenhoek 90(3):269–280. https://doi.org/10.1007/s10482-006-9081-y

    Article  CAS  PubMed  Google Scholar 

  83. Avila M, Garde S, Gaya P, Medina M, Nunez M (2006) Effect of high-pressure treatment and a bacteriocin-producing lactic culture on the proteolysis, texture, and taste of Hispanico cheese. J Dairy Sci 89(8):2882–2893. https://doi.org/10.3168/jds.S0022-0302(06)72561-9

    Article  CAS  PubMed  Google Scholar 

  84. Fontaine L, Hols P (2008) The inhibitory spectrum of thermophilin 9 from Streptococcus thermophilus LMD-9 depends on the production of multiple peptides and the activity of BlpG(St), a thiol-disulfide oxidase. Appl Environ Microbiol 74(4):1102–1110. https://doi.org/10.1128/aem.02030-07

    Article  CAS  PubMed  Google Scholar 

  85. Maldonado A, Ruiz-Barba JL, Jimenez-Diaz R (2003) Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol 69(1):383–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Diep DB, Straume D, Kjos M, Torres C, Nes IF (2009) An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30(8):1562–1574. https://doi.org/10.1016/j.peptides.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  87. Nissen-Meyer J, Oppegard C, Rogne P, Haugen HS, Kristiansen PE (2010) Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics Antimicrob Proteins 2(1):52–60. https://doi.org/10.1007/s12602-009-9021-z

    Article  CAS  PubMed  Google Scholar 

  88. Maldonado-Barragan A, Caballero-Guerrero B, Lucena-Padros H, Ruiz-Barba JL (2013) Induction of bacteriocin production by coculture is widespread among plantaricin-producing Lactobacillus plantarum strains with different regulatory operons. Food Microbiol 33(1):40–47. https://doi.org/10.1016/j.fm.2012.08.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of Fonds de Recherche du Quebec-Nature et Technologie (FRQNT), Grant # 2014-PR-171844.

Funding

The work was supported by the financial support of Fonds de Recherche du Quebec-Nature et Technologie (FRQNT). Grant # 2014-PR-171844.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Aïder.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

We state that this article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent (Optional)

For this type of study, formal consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kareb, O., Aïder, M. Quorum Sensing Circuits in the Communicating Mechanisms of Bacteria and Its Implication in the Biosynthesis of Bacteriocins by Lactic Acid Bacteria: a Review. Probiotics & Antimicro. Prot. 12, 5–17 (2020). https://doi.org/10.1007/s12602-019-09555-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09555-4

Keywords

Navigation