Skip to main content
Log in

Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter, we aim to highlight the origins, development, and evolution of the PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reprinted with permission from [43]. Copyright 2012 American Chemical Society

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Figure reprinted with permission from Proc Nat Acad Sci [153]

Fig. 20

Reprinted with permission from figure reprinted with permission from Proc Nat Acad Sci [154]

Fig. 21
Fig. 22
Fig. 23

Adapted with permission from [136]. Copyright 1998 American Chemical Society

Fig. 24

Reproduced with permission from [1]. Copyright 2014 American Chemical Society. This article may be accessed online at the following URL: http://pubs.acs.org/doi/pdf/10.1021/cr4006654

Fig. 25
Fig. 26
Fig. 27
Fig. 28

Reprinted with permission from [31]. Copyright 2015 American Chemical Society

Fig. 29

Reprinted with permission from [31]. Copyright 2015 American Chemical Society

Fig. 30
Fig. 31

Figures reprinted with permission from [222]. Copyright 2015 American Chemical Society. This article may be accessed online at the following URL: http://pubs.acs.org/doi/pdf/10.1021/jacs.5b09671

Fig. 32

Adapted with permission from [233]. Copyright 2015 American Chemical Society

Fig. 33

Adapted with permission from [233]. Copyright 2015 American Chemical Society

Fig. 34

Reproduced from [242] with permission of the Royal Society of Chemistry

Fig. 35
Fig. 36

Reproduced from [244] with permission of the Royal Society of Chemistry

Fig. 37

Adapted with permission from [245]. Copyright 2008 American Chemical Society

Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Reproduced from [242] with permission of the Royal Society of Chemistry

Fig. 43
Fig. 44
Fig. 45

Adapted from [251] with permission of The Royal Society of Chemistry

Fig. 46
Fig. 47

Adapted from [253] with permission of The Royal Society of Chemistry

Fig. 48

Reprinted with permission from [32]. Copyright 2013 American Chemical Society

Fig. 49

Reprinted with permission from [32]. Copyright 2013 American Chemical Society

Fig. 50
Fig. 51

Reprinted with permission from [256]. Copyright 2013 American Chemical Society

Fig. 52

Reprinted with permission from [256]. Copyright 2013 American Chemical Society

Fig. 53
Fig. 54
Fig. 55
Fig. 56

Similar content being viewed by others

References

  1. Migliore A, Polizzi NF, Therien MJ, Beratan DN (2014) Chem Rev 114:3381–3465

    Article  CAS  Google Scholar 

  2. Reece SY, Hodgkis JM, Stubbe J, Nocera DG (2006) Philos Trans R Soc B 361:1351–1364

    Article  CAS  Google Scholar 

  3. Cukier RI, Nocera DG (1998) Annu Rev Phys Chem 49:337–369

    Article  CAS  Google Scholar 

  4. Mayer JM (2004) Annu Rev Phys Chem 55:363–390

    Article  CAS  Google Scholar 

  5. Huynh MHV, Meyer TJ (2007) Chem Rev 107:5004–5064

    Article  CAS  Google Scholar 

  6. Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ (2012) Chem Rev 112:4016–4093

    Article  CAS  Google Scholar 

  7. Wenger OS (2013) Acc Chem Res 46:1517–1526

    Article  CAS  Google Scholar 

  8. Warren JJ, Mayer JM (2015) Biochemistry 54:1863–1878

    Article  CAS  Google Scholar 

  9. Saveant J-M (2014) Annu Rev Anal Chem 7:537–560

    Article  CAS  Google Scholar 

  10. Meyer TJ, Huynh MHV, Thorp HH (2007) Angew Chem Int Ed 46:5284–5304

    Article  CAS  Google Scholar 

  11. Stubbe J, Nocera DG, Yee CS, Chang MCY (2003) Chem Rev 103:2167–2201

    Article  CAS  Google Scholar 

  12. Minnihan EC, Nocera DG, Stubbe J (2013) Acc Chem Res 46:2524–2535

    Article  CAS  Google Scholar 

  13. Kaila VRI, Verkhovsky MI, Wikström M (2010) Chem Rev 110:7062–7081

    Article  CAS  Google Scholar 

  14. Lehnert N, Solomon EI (2003) J Biol Inorg Chem 8:294–305

    Article  CAS  Google Scholar 

  15. Hatcher E, Soudackov A, Hammes-Schiffer S (2004) J Am Chem Soc 126:5763–5775

    Article  CAS  Google Scholar 

  16. Wang Y, Chen H, Makino M, Shiro Y, Nagano S, Asamizu S, Onaka H, Shaik S (2009) J Am Chem Soc 131:6748–6762

    Article  CAS  Google Scholar 

  17. Sancar A (2003) Chem Rev 103:2203–2237

    Article  CAS  Google Scholar 

  18. Costentin C, Drouet S, Robert M, Saveant JM (2012) Science 338:90–94

    Article  CAS  Google Scholar 

  19. Symes MD, Surendranath Y, Lutterman DA, Nocera DG (2011) J Am Chem Soc 133:5174–5177

    Article  CAS  Google Scholar 

  20. Hammes-Shiffer S, Iordanova N (2004) Biochim Biophys Acta 1655:29–36

    Article  CAS  Google Scholar 

  21. Hammes-Shiffer S (2012) Energy Environ Sci 5:7696

    Article  CAS  Google Scholar 

  22. Green MT, Dawson JH, Gray HB (2004) Science 304:1653–1656

    Article  CAS  Google Scholar 

  23. Li C, Danovich D, Shaik S (2012) Chem Sci 3:1903–1918

    Article  CAS  Google Scholar 

  24. Lo JC, Yabe Y, Baran PS (2014) J Am Chem Soc 136:1304–1307

    Article  CAS  Google Scholar 

  25. Iwasaki K, Wan KK, Oppedisano A, Crossley SWM, Shenvi RA (2014) J Am Chem Soc 136:1300–1303

    Article  CAS  Google Scholar 

  26. King SM, Ma X, Herzon SB (2014) J Am Chem Soc 136:6884–6887

    Article  CAS  Google Scholar 

  27. Choi J, Pulling ME, Smith DM, Norton JR (2008) J Am Chem Soc 130:4250–4252

    Article  CAS  Google Scholar 

  28. Bordwell FG, Cheng JP, Harrelson JA (1988) J Am Chem Soc 110:1229–1231

    Article  CAS  Google Scholar 

  29. Warren JJ, Tronic TA, Mayer JM (2010) Chem Rev 110:6961–7001

    Article  CAS  Google Scholar 

  30. Waidmann CR, Miller AJM (2012) Ng C-WA, Scheuermann ML, Porter TR, Tronic TA, Mayer JM. Energy Environ Sci 5:7771–7780

    Article  CAS  Google Scholar 

  31. Choi GC, Knowles RR (2015) J Am Chem Soc 137:9226–9229

    Article  CAS  Google Scholar 

  32. Tarantino KT, Liu P, Knowles RR (2013) J Am Chem Soc 135:1002–10025

    Article  CAS  Google Scholar 

  33. Salamone M, Bietti M (2015) Acc Chem Res 48:2895–2903

    Article  CAS  Google Scholar 

  34. Mayer JM (2011) Acc Chem Res 44:36–46

    Article  CAS  Google Scholar 

  35. Mayer JM (2011) J Phys Chem Lett 2:1481–1489

    Article  CAS  Google Scholar 

  36. Both HAT and PCET have been observed to obey Marcus-type kinetics. The rate constant predicted by the Marcus cross relation is dependent on the driving force of the reaction: more favorable reactions typically result in more rapid kinetics. Consult [34] and [35] for details

  37. Yayla HY, Knowles RR (2014) Synlett 20:2819–2826

    Google Scholar 

  38. Meyer TJ, Huynh MHV (2003) Inorg Chem 42:8140–8160

    Article  CAS  Google Scholar 

  39. Binstead RA, McGuire ME, Dovletoglou A, Seok WK, Roecker LE, Meyer TJ (1992) J Am Chem Soc 114:173–186

    Article  CAS  Google Scholar 

  40. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980

    Article  CAS  Google Scholar 

  41. Hammes-Shiffer S, Soudackov AV (2008) J Phys Chem B 112:14108–14123

    Article  CAS  Google Scholar 

  42. Lingwood M, Hammond JR, Hrovat DA, Mayer JM, Borden WT (2006) J Chem Theory Comput 2:740–745

    Article  CAS  Google Scholar 

  43. Pesterfield LL, Maddox JB, Crocker MS, Schweitzer GK (2012) J Chem Educ 89:891–899

    Article  CAS  Google Scholar 

  44. Pourbaix M (1945) Thermodynamique des solutions aqueuses diluées: représentation graphique du rôle du pH et du potentiel. Delft University of Technology, Dissertation

    Google Scholar 

  45. Pourbaix M (1974) Atlas of Electrochemical Equilibria in Aqueous Solution. Houston, Texas

    Google Scholar 

  46. Behan RK, Hoffart LM, Stone KL, Krebs C, Green MT (2006) J Am Chem Soc 128:11471–11474

    Article  CAS  Google Scholar 

  47. Hayashi Y, Yamazaki I (1979) J Biol Chem 254:9101–9106

    CAS  Google Scholar 

  48. Green MT (2009) Curr Opin Chem Biol 13:84–88

    Article  CAS  Google Scholar 

  49. Yosca TH, Behan RK, Krest CM, Onderko EL, Langston MC, Green MT (2014) J Am Chem Soc 136:9124–9131

    Article  CAS  Google Scholar 

  50. Namuswe F, Kasper GD (2010) Narducci Sarjeant AA, Hayashi T, Krest CM, Green MT, Moënne-Loccoz P, Goldberg DP. J Am Chem Soc 132:157–167

    Article  CAS  Google Scholar 

  51. Moyer BA, Meyer TJ (1978) J Am Chem Soc 100:3601–3603

    Article  CAS  Google Scholar 

  52. Moyer BA, Meyer TJ (1981) Inorg Chem 20:436–444

    Article  CAS  Google Scholar 

  53. Lebeau EL, Binstead RA, Meyer TJ (2001) J Am Chem Soc 123:10535–10544

    Article  CAS  Google Scholar 

  54. Binstead RA, Moyer BA, Samuels GJ, Meyer TJ (1981) J Am Chem Soc 103:2897–2899

    Article  CAS  Google Scholar 

  55. Moyer BA, Sipe BK, Meyer TJ (1981) Inorg Chem 20:1475–1480

    Article  CAS  Google Scholar 

  56. Roecker L, Dobson JC, Vining WJ, Meyer TJ (1987) Inorg Chem 26:779–781

    Article  CAS  Google Scholar 

  57. Gilbert JA, Gersten SW, Meyer TJ (1982) J Am Chem Soc 104:6872–6873

    Article  CAS  Google Scholar 

  58. Gilbert J, Roecker L, Meyer TJ (1987) Inorg Chem 26:1126–1132

    Article  CAS  Google Scholar 

  59. Seok WK, Meyer TJ (2004) Inorg Chem 43:5205–5215113

    Article  CAS  Google Scholar 

  60. Gupta R, Taguchi T, Lassalle-Kaiser B, Bominaar EL, Yano J, Hendrich MP, Borovik AS (2015) Proc Nat Acad Sci. USA 112:5319–5324

    Article  CAS  Google Scholar 

  61. Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Science 314:821–825

    Article  CAS  Google Scholar 

  62. Britt RD, Campbell KA, Peloquin JM, Gilchrist ML, Aznar CP, Dicus MM, Robblee J, Messinger J (2004) Biochim Biophys Acta 1655:158–171

    Article  CAS  Google Scholar 

  63. Yachandra VK, Sauer K, Klein MP (1996) Chem Rev 96:2927–2950

    Article  CAS  Google Scholar 

  64. Gupta R, MacBeth CE, Young VG Jr, Borovik AS (2002) J Am Chem Soc 124:1136–1137

    Article  CAS  Google Scholar 

  65. Gupta R, Borovik AS (2003) J Am Chem Soc 125:13234–13242

    Article  CAS  Google Scholar 

  66. Borovik AS (2011) Chem Soc Rev 40:1870–1874

    Article  CAS  Google Scholar 

  67. Parsell TH, Yang MY, Borovik AS (2009) J Am Chem Soc 131:2762–2763

    Article  CAS  Google Scholar 

  68. Goldsmith CR, Cole AP, Stack TDP (2005) J Am Chem Soc 127:9904–9912

    Article  CAS  Google Scholar 

  69. Goldsmith CR, Stack TDP (2006) Inorg Chem 45:6048–6055

    Article  CAS  Google Scholar 

  70. Olmstead WN, Margolin Z, Bordwell FG (1980) J Org Chem 45:3295–3299

    Article  CAS  Google Scholar 

  71. Bordwell FG, Cheng J, Ji GZ, Satish AV, Zhang X (1991) J Am Chem Soc 113:9790–9795

    Article  CAS  Google Scholar 

  72. Taguchi T, Stone KL, Gupta R, Kaiser-Lassalle B, Yano J, Hendrich MP, Borovik AS (2014) Chem Sci 5:3064–3071

    Article  CAS  Google Scholar 

  73. Shook RL, Peterson SM, Greaves J, Moore C, Rheingold AL, Borovik AS (2011) J Am Chem Soc 133:5810–5817

    Article  CAS  Google Scholar 

  74. Baldwin MJ, Pecoraro VL (1996) J Am Chem Soc 118:11325–11326

    Article  CAS  Google Scholar 

  75. Pecoraro VL, Baldwin MJ, Gelasco A (1994) Chem Rev 94:807–826

    Article  CAS  Google Scholar 

  76. Amin M, Vogt L, Vassiliev S, Rivalta I, Sultan MM, Bruce D, Brudvig GW, Batista VS, Gunner MR (2013) J Phys Chem B 117:6217–6226

    Article  CAS  Google Scholar 

  77. Caudle MT, Pecoraro VL (1997) J Am Chem Soc 119:3415–3416

    Article  CAS  Google Scholar 

  78. Lockwood MA, Wang K, Mayer JM (1999) J Am Chem Soc 121:11894–11895

    Article  CAS  Google Scholar 

  79. Larsen AS, Wang K, Lockwood MA, Rice GL, Won TJ, Lovell S, Sadilek M, Tureček F, Mayer JM (2002) J Am Chem Soc 124:10112–10123

    Article  CAS  Google Scholar 

  80. Wang K, Mayer JM (1997) J Am Chem Soc 119:1470–1471

    Article  CAS  Google Scholar 

  81. Thorp HH, Sarneski JE, Brudvig GW, Crabtree RH (1989) J Am Chem Soc 111:9249–9250

    Article  CAS  Google Scholar 

  82. Ruettinger WF, Ho DM, Dismukes GC (1999) Inorg Chem 38:1036–1037

    Article  CAS  Google Scholar 

  83. Maneiro M, Ruettinger WF, Bourles E, McLendon GL, Dismukes GC (2003) Proc Nat Acad Sci USA 100:3707–3712

    Article  CAS  Google Scholar 

  84. Carrel TG, Bourles E, Lin M, Dismukes GC (2003) Inorg Chem 42:2849–2858

    Article  CAS  Google Scholar 

  85. Bordwell FG, Zhang XM, Cheng JP (1993) J Org Chem 58:6410–6416

    Article  CAS  Google Scholar 

  86. Kaizer J, Klinker EJ, Oh NY, Rohde JU, Song WJ, Stubna A, Kim J, Münch E, Nam W, Que L (2004) J Am Chem Soc 126:472–473

    Article  CAS  Google Scholar 

  87. Price JC, Barr EW, Tirupati B, Krebs C, Bollinger JM (2003) J Am Chem Soc 125:13008–13009

    Article  CAS  Google Scholar 

  88. Nesheim JC, Lipscomb JD (1996) Biochemistry 35:10240–10247

    Article  CAS  Google Scholar 

  89. Kumar D, Hirao H, Que L, Shaik S (2005) J Am Chem Soc 127:8026–8027

    Article  CAS  Google Scholar 

  90. Mayer JM (1998) Acc Chem Res 31:441

    Article  CAS  Google Scholar 

  91. Park J, Lee YM, Nam W, Fukuzumi S (2013) J Am Chem Soc 135:5052–5061

    Article  CAS  Google Scholar 

  92. Park J, Morimoto Y, Lee YM, Nam W, Fukuzumi S (2012) J Am Chem Soc 134:3903–3911

    Article  CAS  Google Scholar 

  93. Wang D, Farquhar ER, Stubna A, Münch E, Que L (2009) Nature Chem 1:145–150

    Article  CAS  Google Scholar 

  94. Collins MJ, Ray K, Que L (2006) Inorg Chem 45:8009–8011

    Article  CAS  Google Scholar 

  95. Wang D, Que L (2013) Chem Commun 49:10682–10684

    Article  CAS  Google Scholar 

  96. Sawyer DT, Sobkowiak A, Robers JL (1995) Electrochemistry for Chemists. John Wiley and Sons, New York

    Google Scholar 

  97. Ramdhaine B, Stern CL, Goldberg DP (2001) J Am Chem Soc 123:9447–9448

    Article  CAS  Google Scholar 

  98. Goldberg DP (2007) Acc Chem Res 40:626–634

    Article  CAS  Google Scholar 

  99. Baglia RA, Prokop-Prigge KA, Neu HM, Siegler MA, Goldberg DP (2015) J Am Chem Soc 137:10874–10877

    Article  CAS  Google Scholar 

  100. Lansky DE, Goldberg DP (2006) Inorg Chem 45:5119–5125

    Article  CAS  Google Scholar 

  101. Lansky DE, Mandimustra B, Ramdhanie B, Clausén M, Penner-Hahn J, Zvyagin SA, Telser J, Krzystek J, Zhan R, Ou Z, Kadish KM, Zakharov L, Rheingold AL, Goldberg DP (2005) Inorg Chem 44:4485–4498

    Article  CAS  Google Scholar 

  102. Fukuzumi S, Kotani H, Prokop KA, Goldberg DP (2011) J Am Chem Soc 133:1859–1869

    Article  CAS  Google Scholar 

  103. Prokop KA, de Visser SP, Goldberg DP (2010) Angew Chem Int Ed 49:5091–5095

    Article  CAS  Google Scholar 

  104. Neu HM, Jung J, Baglia RA, Siegler MA, Ohkubo K, Fukuzumi S, Goldberg DP (2015) J Am Chem Soc 137:4614–4617

    Article  CAS  Google Scholar 

  105. Boaz NC, Bell SR, Groves JT (2015) J Am Chem Soc 137:2875–2885

    Article  CAS  Google Scholar 

  106. Bordwell FG (1988) Acc Chem Res 21:456–463

    Article  CAS  Google Scholar 

  107. Westlake BC, Brennaman MK, Concepcion JJ, Paul JJ, Bettis SE, Hampton SD, Miller SA, Lebedeva NV, Forbes MDE, Moran M, Meyer TJ, Papanikolas JM (2011) Proc Nat Acad Sci. USA 108:8554–8558

    Article  CAS  Google Scholar 

  108. Chen X, Ma G, Sun W, Dai H, Xiao D, Zhang Y, Qin X, Liu Y, Bu Y (2014) J Am Chem Soc 136:4515–4524

    Article  CAS  Google Scholar 

  109. Liu W, Huang X, Cheng MJ, Nielsen RJ, Goddard WA III, Groves JT (2012) Science 337:1322–1325

    Article  CAS  Google Scholar 

  110. Huang X, Bergsten TM, Groves JT (2015) J Am Chem Soc 137:5300–5303

    Article  CAS  Google Scholar 

  111. Liu W, Groves JT (2010) J Am Chem Soc 132:12847–12849

    Article  CAS  Google Scholar 

  112. Umile TP, Groves JT (2011) Angew Chem Int Ed 50:695–698

    Article  CAS  Google Scholar 

  113. Umile TP, Wang D, Groves JT (2011) Inorg Chem 50:10353–10362

    Article  CAS  Google Scholar 

  114. Svistunenko DA, Cooper CE (2004) Biophys J 87:582–595

    Article  CAS  Google Scholar 

  115. Sahlin M, Graslund A, Ehrenberg A, Sjöberg BM (1982) J Biol Chem 257:366–369

    CAS  Google Scholar 

  116. Debus RJ, Barry BA, Babcock GT, McIntosh L (1988) Proc Nat Acad Sci. USA 85:427–430

    Article  CAS  Google Scholar 

  117. Hsi LC, Hoganson CW, Babcock GT, Smith WL (199) Biochem Biophys Res Commun 202:1592–1598

  118. Biczók L, Linschitz H (1995) J Phys Chem 99:1843–1844

    Article  Google Scholar 

  119. Biczók L, Gupta N, Linschitz H (1997) J Am Chem Soc 119:12601–12609

    Article  Google Scholar 

  120. Gupta N, Linschitz H, Biczók L (1997) Fullerene Sci Tech 5:343–353

    Article  CAS  Google Scholar 

  121. Maki T, Araki Y, Ishida Y, Onomura O, Matsumura Y (2001) J Am Chem Soc 123:3371–3372

    Article  CAS  Google Scholar 

  122. Costentin C, Robert M, Savéant JM (2007) J Am Chem Soc 129:9953–9963

    Article  CAS  Google Scholar 

  123. Lucarini M, Mugnaini V, Pedulli GF, Guerra M (2003) J Am Chem Soc 125:8318–8329

    Article  CAS  Google Scholar 

  124. Markle TF, Rhile IJ, DiPasquale AG, Mayer JM (2008) Proc Nat Acad Sci. USA 105:8185–8190

    Article  CAS  Google Scholar 

  125. Markle TF, Tronic TA, DiPasquale AG, Kaminsky W, Mayer JM (2012) J Phys Chem A 116:12249–12259

    Article  CAS  Google Scholar 

  126. Markle TF, Mayer JM (2008) Angew Chem Int Ed 47:738–740

    Article  CAS  Google Scholar 

  127. Rhile IJ, Markle TF, Nagao H, DiPasquale AG, Lam OP, Lockwood MA, Rotter K, Mayer JM (2006) J Am Chem Soc 128:6075–6076

    Article  CAS  Google Scholar 

  128. Costentin C, Robert M, Savéant JM (2010) Angew Chem Int Ed 49:3803–3806

    Article  CAS  Google Scholar 

  129. Thomas F, Jarjayes O, Jamet H, Hamman S, Saint-Aman E, Duboc C, Pierre JL (2004) Angew Chem Int Ed 43:594–597

    Article  CAS  Google Scholar 

  130. Reece SY, Nocera DG (2009) Annu Rev Biochem 78:673–699

    Article  CAS  Google Scholar 

  131. Nagle JF, Morowitz HJ (1978) Proc Nat Acad Sci USA 75:298–302

    Article  CAS  Google Scholar 

  132. Shinobu A, Agmon N (2009) J Phys Chem A 113:7253–7266

    Article  CAS  Google Scholar 

  133. Chen K, Hirst J, Camba R, Bonagura CA, Stout CD, Burgess BK, Armstrong FA (2000) Nature 405:814–817

    Article  CAS  Google Scholar 

  134. Rottenberg H (1998) Biochim Biophys Acta 1364:1–16

    Article  CAS  Google Scholar 

  135. Wraight CA (2006) Biochim Biophys Acta 1757:886–912

    Article  CAS  Google Scholar 

  136. Siegbahn PEM, Eriksson L, Himo F, Pavlov M (1998) J Phys Chem B 102:10622–10629

    Article  CAS  Google Scholar 

  137. Cui Q, Karplus M (2003) J Phys Chem B 107:1071–1078

    Article  CAS  Google Scholar 

  138. Sjödin M, Irebo T, Utas J, Lind J, Merényi G, Åkermark B, Hammarström L (2006) J Am Chem Soc 128:13076–13083

    Article  CAS  Google Scholar 

  139. Rhile IJ, Mayer JM (2004) J Am Chem Soc 126:12718–12719

    Article  CAS  Google Scholar 

  140. Sjödin M, Styring S, Åkermark B, Sun L, Hammarström L (2000) J Am Chem Soc 122:3932–3936

    Article  CAS  Google Scholar 

  141. Chen J, Kuss-Peterman M, Wenger OS (2014) Chem Eur J 20:4098–4104

    Article  CAS  Google Scholar 

  142. Rogge CE, Liu W, Wu G, Wang L-H, Kulmacz RJ, Tsai AL (2004) Biochemistry 43:1560–1568

    Article  CAS  Google Scholar 

  143. Dempsey JL, Winkler JR, Gray HB (2010) Chem Rev 110:7024–7039

    Article  CAS  Google Scholar 

  144. Gagliardi CJ, Westlake BC, Kent CA, Paul JJ, Papanikolas JM, Meyer TJ (2010) Coord Chem Rev 254:2459–2471

    Article  CAS  Google Scholar 

  145. Roffey RA, Kramer DM (1994) Govindjee, Sayre RT. Biochim Biophys Acta 1185:257–270

    Article  CAS  Google Scholar 

  146. Mamedov F, Sayre RT, Styring S (1998) Biochemistry 37:14245–14256

    Article  CAS  Google Scholar 

  147. Svensson B, Etchebest C, Tuffery P, van Kan P, Smith J, Styring S (1996) Biochemistry 35:14486–14502

    Article  CAS  Google Scholar 

  148. Wenger OS (2015) Coord Chem Rev 282–283:150–158

    Article  CAS  Google Scholar 

  149. Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113:5322–5363

    Article  CAS  Google Scholar 

  150. Concepcion JJ, Brennaman MK, Deyton JR, Lebedeva NV, Forbes MDE, Papnikolas JM, Meyer TJ (2007) J Am Chem Soc 129:6968–6969

    Article  CAS  Google Scholar 

  151. Bronner C, Wenger OS (2012) J Phys Chem Lett 3:70

    Article  CAS  Google Scholar 

  152. Pizano AA, Yang JL, Nocera DG (2012) Chem Sci 3:2457–2461

    Article  CAS  Google Scholar 

  153. Costentin C, Louault C, Robert M, Savéant JM (2009) Proc Nat Acad Sci USA 106:18143–18148

    Article  CAS  Google Scholar 

  154. Berry BW, Martinez-Rivera MC, Tommos C (2012) Proc Nat Acad Sci USA 109:9739–9743

    Article  CAS  Google Scholar 

  155. Tommos C, Skalicky JJ, Pilloud DL, Wand J, Dutton DP (1999) Biochemistry 38:9495–9507

    Article  CAS  Google Scholar 

  156. Martinez-Rivera MC, Berry BW, Valentine KG, Westerlund K, Hay S, Tommos C (2011) J Am Chem Soc 133:17786–17795

    Article  CAS  Google Scholar 

  157. O’Dea JJ, Osteryoung J, Osteryoung RA (1981) Anal Chem 53:695–701

    Article  Google Scholar 

  158. Miles AB, Compton RG (2000) J Phys Chem B 104:5331–5342

    Article  CAS  Google Scholar 

  159. Glover SD, Jorge C, Liang L, Valentine KG, Hammarström L, Tommos C (2014) J Am Chem Soc 136:14039–14051

    Article  CAS  Google Scholar 

  160. Zhang MT, Hammarström L (2011) J Am Chem Soc 133:8806–8809

    Article  CAS  Google Scholar 

  161. Zhang MT, Nilsson J, Hammarström L (2012) Energy Environ Sci 5:7732–7736

    Article  CAS  Google Scholar 

  162. Gagliardi CJ, Binstead RA, Thorp HH, Meyer TJ (2011) J Am Chem Soc 133:19594–19597

    Article  CAS  Google Scholar 

  163. Wang Y, Hirao H, Chen H, Onaka H, Nagano S, Shaik S (2008) J Am Chem Soc 130:7170–7171

    Article  CAS  Google Scholar 

  164. Makino M, Sugimoto H, Shiro Y, Asamizu S, Onaka H, Nagano S (2007) Proc Nat Acad Sci. USA 104:11591–11596

    Article  CAS  Google Scholar 

  165. De Montellano O (ed) (2015) Cytochrome P450: Structure, Mechanism, and Biochemistry. Springer, Cham

    Google Scholar 

  166. Ekberg M, Pötsch S, Sandin E, Thunnissen M, Nordlund P, Sahlin M, Sjöberg BM (1998) J Biol Chem 273:21003–21008

    Article  CAS  Google Scholar 

  167. Young ER, Rosenthal J, Hodgkiss JM, Nocera DG (2009) J Am Chem Soc 131:7678–7684

    Article  CAS  Google Scholar 

  168. Hodgkiss JM, Damrauer NH, Pressé S, Rosenthal J, Nocera DG (2006) J Phys Chem B 110:18853–18858

    Article  CAS  Google Scholar 

  169. Pressé S, Silbey R (2006) J Chem Phys 124:164504

    Article  CAS  Google Scholar 

  170. Clare LA, Pham AT, Magdaleno F, Acosta J, Woods JE, Cooksy AL, Smith DK (2013) J Am Chem Soc 135:18930

    Article  CAS  Google Scholar 

  171. Alligrant TM, Alvarez JC (2011) J Phys Chem C 115:10797–10805

    Article  CAS  Google Scholar 

  172. Nordlund P, Eklund H (1993) J Mol Bio 232:123–164

    Article  CAS  Google Scholar 

  173. Nordlund P, Sjöberg BM, Eklund H (1990) Nature 345:593–598

    Article  CAS  Google Scholar 

  174. Hogböm M, Galander M, Andersson M, Kolberg M, Hofbauer W, Lassman G, Nordlund P, Lendzian F (2003) Proc Nat Acad Sci USA 100:3209–3214

    Article  Google Scholar 

  175. Himo F, Seigbahn PEM (2003) Chem Rev 103:2421–2456

    Article  CAS  Google Scholar 

  176. Lendzian F (2005) Biochim Biophys Acta 1707:67–90

    Article  CAS  Google Scholar 

  177. Lendzian F, Sahlin M, MacMillan F, Bittl R, Fiege R, Pötsch S, Sjöberg BM, Gräslund A, Lubitz W, Lassmann G (1996) J Am Chem Soc 118:8111–8120

    Article  CAS  Google Scholar 

  178. Byrdin M, Eker APM, Vos MH, Brettel K (2003) Proc Nat Acad Sci USA 100:8676–8681

    Article  CAS  Google Scholar 

  179. Aubert C, Vos MH, Mathis P, Eker APM, Brettel K (2000) Nature 405:586–590

    Article  CAS  Google Scholar 

  180. Zieba AA, Richardson C, Lucero C, Dieng SD, Gindt YM, Schelvis JPM (2011) J Am Chem Soc 133:7824–7836

    Article  CAS  Google Scholar 

  181. Kapetanaki SM, Ramsey M, Gindt YM, Schelvis JPM (2004) J Am Chem Soc 126:6214

    Article  CAS  Google Scholar 

  182. Byrdin M, Sartor V, Eker APM, Vos MH, Aubert C, Brettel K, Mathis P (2004) Biochim Biophys Acta 1655:64–70

    Article  CAS  Google Scholar 

  183. Shih C, Museth AK, Abrahamsson M, Blanco-Rodriguez AM, Di Bilio AJ, Sudhamsu J, Crane BR, Ronayne KL, Towrie M, Vlcek A Jr, Richards JH, Winkler JR, Gray HB (2008) Science 320:1760–1762

    Article  CAS  Google Scholar 

  184. Stoll S, Shafaat HS, Krzystek J, Ozarowski A, Tauber MJ, Kim JE, Britt RD (2011) J Am Chem Soc 133:18098

    Article  CAS  Google Scholar 

  185. Farver O, Skov LK, Young S, Bonander N, Karlsson BG, Vännguard T, Pecht I (1997) J Am Chem Soc 119:5453–5454

    Article  CAS  Google Scholar 

  186. Fujita K, Nakamura N, Ohno H, Leigh BS, Niki K, Gray HB, Richards JH (2004) J Am Chem Soc 126:13954–13961

    Article  CAS  Google Scholar 

  187. Gilardi G, Mei G, Rosato N, Canters GW, Finazzi-Agrò A (1994) Biochemistry 33:1425

    Article  CAS  Google Scholar 

  188. Gagliardi CJ, Murphy CF, Binstead RA, Thorp HH, Meyer TJ (2015) J Phys Chem C 119:7028–7038

    Article  CAS  Google Scholar 

  189. Medina-Ramos J, Oyesanya O, Alvarez JC (2013) J Phys Chem C 117:902–912

    Article  CAS  Google Scholar 

  190. Kuss-Peterman M, Wenger OS (2013) J Phys Chem Lett 4:2535–2539

    Article  CAS  Google Scholar 

  191. Griesbaum K (1970) Angew Chem Int Ed 9:273–287

    Article  CAS  Google Scholar 

  192. Heiba EAI, Dessau RM (1967) J Org Chem 32:3837–3840

    Article  CAS  Google Scholar 

  193. Hoyle CE, Bowman CN (2010) Angew Chem Int Ed 49:1540–1573

    Article  CAS  Google Scholar 

  194. Tyson EL (2014) Niemeyer Zl, Yoon TP. J Org Chem 79:1427–1436

    Article  CAS  Google Scholar 

  195. LeBel NA, DeBoer A (1967) J Am Chem Soc 89:2784–2785

    Article  CAS  Google Scholar 

  196. Benati L, Leardini R, Minozzi M, Nanni D, Scialpi R, Spagnolo P, Strazzari S, Zanardi G (2004) Angew Chem Int Ed 43:3598–3601

    Article  CAS  Google Scholar 

  197. Denes F, Pichowicz M, Povie G, Renaud P (2014) Chem Rev 114:2587–2693

    Article  CAS  Google Scholar 

  198. Dang HS, Kim KM, Roberts BP (1998) Chem Commun 1413–1414

  199. Zhao R, Lind J, Merenyi G, Eriksen TE (1994) J Am Chem Soc 116:12010–12015

    Article  CAS  Google Scholar 

  200. Fujisawa H, Hayakawa Y, Sasaki Y, Mukaiyama T (2001) Chem Lett 30:632–633

    Article  Google Scholar 

  201. Huyser ES, Kellogg RM (1966) J Org Chem 31:3366–3369

    Article  CAS  Google Scholar 

  202. Dang HS, Roberts BP (1999) Tet Lett 40:8929–8933

    Article  CAS  Google Scholar 

  203. Kemper J, Studer A (2005) Angew Chem Int Ed 44:4914

    Article  CAS  Google Scholar 

  204. Qvortrup K, Rankic DA, MacMillan DWC (2014) J Am Chem Soc 136:626–629

    Article  CAS  Google Scholar 

  205. Hager D, MacMillan DWC (2014) J Am Chem Soc 136:16986–16989

    Article  CAS  Google Scholar 

  206. Li JN, Liu L, Fu Y, Guo QX (2006) Tetrahedron 62:4453–4462

    Article  CAS  Google Scholar 

  207. Kolthoff IM, Chantooni MK, Bhowmik S (1968) J Am Chem Soc 90:23–28

    Article  CAS  Google Scholar 

  208. Newcomb M, Esker JL (1991) Tetrahedron Lett 32:1035–1038

    Article  CAS  Google Scholar 

  209. Boivin J, Callier-Dublanchet AC, Quiclet-Sire B, Schiano AM, Zard SZ (1995) Tetrahedron 51:6517–6528

    Article  CAS  Google Scholar 

  210. Guin J, Frolich R, Studer A (2008) Angew Chem Int Ed 47:779–782

    Article  CAS  Google Scholar 

  211. Choi CM, Guin J, Mück-Lichtenfeld C, Grimme S, Studer A (2011) Chem-Asian J 6:1197–1209

    Article  CAS  Google Scholar 

  212. Nicolaou KC, Baran PS, Zhong YL, Barluenga S, Hunt KW, Kranich R, Vega JA (2002) J Am Chem Soc 124:2233–2244

    Article  CAS  Google Scholar 

  213. Tang Y, Li C (2004) Org Lett 6:3229–3231

    Article  CAS  Google Scholar 

  214. Li Z, Song L, Li C (2013) J Am Chem Soc 135:4640–4643

    Article  CAS  Google Scholar 

  215. While many reactions presented throughout the review are done so as closed catalytic cycles, the community has become increasingly aware of potential chain mechanisms. In all instances, we defer to the mechanism presented by the author. For more information, consult: Cismesia MA, Yoon TP (2015) Chem Sci 6:5426–5434

  216. Hanss D, Freys JC, Bernardinelli GR, Wenger OS (2009) Eur J Inorg Chem 2009:4850–4859

    Article  CAS  Google Scholar 

  217. Warren JJ, Menzeleev AR, Kretchmer JS, Miller TF III, Gray HB, Mayer JM (2013) J Phys Chem Lett 4:519–523

    Article  CAS  Google Scholar 

  218. Warren JJ, Mayer JM (2011) J Am Chem Soc 133:8544–8551

    Article  CAS  Google Scholar 

  219. Schrauben JN, Cattaneo M, Day TC, Tenderholt AL, Mayer JM (2012) J Am Chem Soc 134:16635–16645

    Article  CAS  Google Scholar 

  220. Megiatto JD Jr, Méndez-Hernández DD, Tejeda-Ferrari ME, Teillout AL, Llansola-Portolés MJ, Kodis G, Moore TA, Moore AL (2014) Nat Chem 6:423–428

    Article  CAS  Google Scholar 

  221. Edwards SJ, Soudackov AV, Hammes-Schiffer S (2009) J Phys Chem A 113:2117–2126

    Article  CAS  Google Scholar 

  222. Miller DC, Choi GC, Orbe HS, Knowles RR (2015) J Am Chem Soc 137:13492–13495

    Article  CAS  Google Scholar 

  223. Estes DP, Grills DC, Norton JR (2014) J Am Chem Soc 136:17362–17365

    Article  CAS  Google Scholar 

  224. Roth JP, Mayer JM (1999) Inorg Chem 38:2760–2761

    Article  CAS  Google Scholar 

  225. Manner VW, Mayer JM (2009) J Am Chem Soc 131:9874–9875

    Article  CAS  Google Scholar 

  226. Jonas RT, Stack TDP (1997) J Am Chem Soc 119:8566–8567

    Article  CAS  Google Scholar 

  227. Semproni SP, Milsmann C, Chirik PJ (2014) J Am Chem Soc 136:9211–9224

    Article  CAS  Google Scholar 

  228. Fang H, Ling Z, Lang K, Brothers PJ, Bruin B, Fu X (2014) Chem Sci 5:916–921

    Article  CAS  Google Scholar 

  229. Miyazaki S, Kojima T, Mayer JM, Fukuzumi S (2009) J Am Chem Soc 131:11615–11624

    Article  CAS  Google Scholar 

  230. Wu A, Mayer JM (2008) J Am Chem Soc 130:14745–14754

    Article  CAS  Google Scholar 

  231. Wu A, Masland J, Swartz RD, Kaminsky W, Mayer JM (2007) Inorg Chem 46:11190–11201

    Article  CAS  Google Scholar 

  232. Mislmann C, Semproni SP, Chirik PJ (2014) J Am Chem Soc 136:12099–12107

    Article  CAS  Google Scholar 

  233. Tarantino KT, Miller DC, Callon TA, Knowles RR (2015) J Am Chem Soc 137:6440–6443

    Article  CAS  Google Scholar 

  234. Huang K, Han JH, Cole AP, Musgrave CB, Waymouth RM (2005) J Am Chem Soc 127:3807–3816

    Article  CAS  Google Scholar 

  235. Huang K, Han JH, Musgrave CB, Waymouth RM (2006) Organometallics 25:3317–3323

    Article  CAS  Google Scholar 

  236. Gansauer A, von Laugenberg D, Kube C, Dahmen T, Michelmann A, Behlendorf M, Sure R, Seddiqzai M, Grimme S, Sadasivam DV, Fianu GD, Flowers RA (2015) Chem Eur J 21:280–289

    Article  CAS  Google Scholar 

  237. Jeftic L, Manning G (1970) J Electroanal Chem 26:195–200

    Article  CAS  Google Scholar 

  238. Quan M, Sanchez D, Wasylkiw MF, Smith DK (2007) J Am Chem Soc 129:12847–12856

    Article  CAS  Google Scholar 

  239. Gupta N, Linschitz H (1997) J Am Chem Soc 119:6384–6391

    Article  CAS  Google Scholar 

  240. Okamoto K, Ohkubo K, Kadish KM, Fukuzumi S (2004) J Phys Chem A 108:10405–10413

    Article  CAS  Google Scholar 

  241. Gomez M, Gomez-Castro CZ, Padilla-Martinez II, Martinez-Martinez FJ, Gonzalez FJ (2004) J Electroanal Chem 567:269–276

    Article  CAS  Google Scholar 

  242. Fukuzumi S, Ishikawa K, Hironaka K, Tanaka T (1987) J Chem Soc Perkin Trans II:751–760

    Article  Google Scholar 

  243. Fukuzumi S, Ishikawa M, Tanaka T (1989) J Chem Soc Perkin Trans II:1811–1816

    Article  Google Scholar 

  244. Ishikawa M, Fukuzumi S (1990) J Chem Soc, Faraday Trans 86:3531–3536

    Article  CAS  Google Scholar 

  245. Yuasa J, Yamada S, Fukuzumi S (2008) J Am Chem Soc 130:5808–5820

    Article  CAS  Google Scholar 

  246. Zhai L, Shukla R, Wadumethrige SH, Rathore R (2010) J Org Chem 75:4748–4760

    Article  CAS  Google Scholar 

  247. Turek AK, Hardee DJ, Ullman AM, Nocera DG, Jacobsen EN (2015) Angew Chem Int Ed 54: doi:10.1002/ange.201508060

  248. Bock CR, Connor JA, Gutierrez AR, Meyer TJ, Whitten DG, Sullivan BP, Nagle JK (1997) J Am Chem Soc 101:4815–4824

    Article  Google Scholar 

  249. Fukuzumi S, Mochizuki S, Tanaka T (1989) J Am Chem Soc 111:1497–1499

    Article  CAS  Google Scholar 

  250. Fukuzumi S, Mochizuki S, Tanaka T (1990) J Phys Chem 94:722–726

    Article  CAS  Google Scholar 

  251. Ishikawa M, Fukuzumi S (1990) J Chem Soc Chem Commun 1353–1355

  252. Fukuzumi S, Kuroda S, Goto T, Ishikawa K, Tanaka T (1989) J Chem Soc Perkin Trans II:1047–1053

    Article  Google Scholar 

  253. Du J, Espelt LR, Guzei IA, Yoon TP (2011) Chem Sci 2:2115–2119

    Article  CAS  Google Scholar 

  254. Ischay MA, Anzovino ME, Du J, Yoon TP (2008) J Am Chem Soc 130:12886–12887

    Article  CAS  Google Scholar 

  255. Du J, Yoon TP (2009) J Am Chem Soc 131:14604–14605

    Article  CAS  Google Scholar 

  256. Rono LJ, Yayla HY, Wang DY, Armstrong MF, Knowles RR (2013) J Am Chem Soc 135:17735–17738

    Article  CAS  Google Scholar 

  257. Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M (2015) Angew Chem Int Ed 54:8828–8832

    Article  CAS  Google Scholar 

  258. Mercer GJ, Sigman MS (2003) Org Lett 5:1591–1594

    Article  CAS  Google Scholar 

  259. DiRocco DA, Dykstra K, Krska S, Vachal P, Conway DV, Tudge M (2014) Angew Chem Int Ed 53:4802–4806

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the NIH (R01 GM113105) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Knowles.

Additional information

This article is part of the Topical Collection “Hydrogen Transfer Reactions”; edited by Gabriela Guillena, Diego J. Ramón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, D.C., Tarantino, K.T. & Knowles, R.R. Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities. Top Curr Chem (Z) 374, 30 (2016). https://doi.org/10.1007/s41061-016-0030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0030-6

Keywords

Navigation