Skip to main content

Advertisement

Log in

Additive hazards model with auxiliary subgroup survival information

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

The semiparametric additive hazards model is an important way for studying the effect of potential risk factors for right-censored time-to-event data. In this paper, we study the additive hazards model in the presence of auxiliary subgroup \(t^*\)-year survival information. We formulate the known auxiliary information in the form of estimating equations, and combine them with the conventional score-type estimating equations for the estimation of the regression parameters based on the maximum empirical likelihood method. We prove that the new estimator of the regression coefficients follows asymptotically a multivariate normal distribution with a sandwich-type covariance matrix that can be consistently estimated, and is strictly more efficient, in an asymptotic sense, than the conventional one without incorporation of the available auxiliary information. Simulation studies show that the new proposal has substantial advantages over the conventional one in terms of standard errors, and with the accommodation of more informative information, the proposed estimator becomes more competing. An AIDS data example is used for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aalen OO (1980) A model for non-parametric regression analysis of counting processes. In: Klonecki W, Kozek A, Rosinski J (eds) Lecture notes on statistics 2: mathematical statistics and probability theory. Springer, New York, pp 1–25

    Google Scholar 

  • Aalen OO (1989) A linear regression model for the analysis of lifetimes. Stat Med 8:907–925

    Article  Google Scholar 

  • Chatterjee N, Chen YH, Maas P, Carroll R (2016) Constrained maximum likelihood estimation for model calibration using summary-level information from external big data sources. J Am Stat Assoc 111:107–117

    Article  MathSciNet  Google Scholar 

  • Cox DR (1972) Regression models and life tables (with discussion). J R Stat Soc Ser B 34:187–220

    MATH  Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New York

    MATH  Google Scholar 

  • Hammer SM, Katzenstein DA, Hughes MD, Gundacker H, Schooley RT, Haubrich RH, Henry WK, Lederman MM, Phair JP, Niu M, Hirsch MS, Merigan TC (1996) A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. N Engl J Med 335:1081–1090

    Article  Google Scholar 

  • Han PS, Lawless JF (2016) Discussion of constrained maximum likelihood estimation for model calibration using summary-level information from external big data source by Chatterjee, Chen, Maas and Carroll. J Am Stat Assoc 111:118–121

    Article  Google Scholar 

  • Huang CY, Qin J, Tsai HT (2016) Efficient estimation of the Cox model with auxiliary subgroup survival information. J Am Stat Assoc 111:787–799

    Article  MathSciNet  Google Scholar 

  • Huffer FW, McKeague IW (1991) Weighted least squares estimation for Aalen’s additive risk model. J Am Stat Assoc 86:114–129

    Article  Google Scholar 

  • Kim J, Song NS, Lee SY (1998) Goodness-of-fit tests for the additive risk model with (\(p>2\))-dimensional time-invariant covariates. Lifetime Data Anal 4:405–416

    Article  MATH  Google Scholar 

  • Li H, Duan XG, Yin GS (2016) Generalized method of moments for additive hazards model with clustered dental survival data. Scand J Stat 43:1124–1139

    Article  MathSciNet  MATH  Google Scholar 

  • Lin DY, Wei LJ, Ying ZL (1993) Checking the Cox model with cumulative sums of martingale based residuals. Biometrika 80:557–572

    Article  MathSciNet  MATH  Google Scholar 

  • Lin DY, Ying ZL (1994) Semiparametric analysis of the additive risk model. Biometrika 81:61–71

    Article  MathSciNet  MATH  Google Scholar 

  • McKeague IW, Sasieni PD (1994) A partly parametric additive risk model. Biometrika 81:501–514

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75:237–248

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (2001) Empirical likelihood. Chapman and Hall, Boca Raton

    Book  MATH  Google Scholar 

  • Qin J, Lawless JF (1994) Empirical likelihood and general estimating equations. Ann Stat 22:300–325

    Article  MathSciNet  MATH  Google Scholar 

  • Qin J, Zhang H, Li PF, Albanes D, Yu K (2015) Using covariate-specific disease prevalence information to increase the power of case-control studies. Biometrika 102:169–180

    Article  MathSciNet  MATH  Google Scholar 

  • Shang WP, Wang X (2017) The generalized moment estimation of the additive-multiplicative hazard model with auxiliary survival information. Comput Stat Data Anal 112:154–169

    Article  MathSciNet  MATH  Google Scholar 

  • Wen CC, Chen YH (2014) Functional inference for interval censored data in proportional odds model with covariate measurement error. Stat Sin 24:1301–1317

    MathSciNet  MATH  Google Scholar 

  • Yin GS, Cai JW (2004) Additive hazards model with multivariate failure time data. Biometrika 91:801–818

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the two referees, the associate editor and the editor for their constructive and insightful comments that led to significant improvements in the article. This research was supported by the National Natural Science Foundation of China Grant 11771049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Duan.

Appendix

Appendix

1.1 Proof of Theorem 1

Before presenting the proof of Theorem 1, we first introduce a matrix algebra result, which is not only of interest in its own right, but also is crucial to compare the asymptotic efficiency of the new estimator with the conventional one.

Lemma 1

Let \(\text{ P }_1\) be a \(d\times r\) matrix, \(\text{ P }_2\) be a d-dimensional column vector, and \(\text{ D }\) be a \(d\times d\) positive matrix. Then we have

$$\begin{aligned} (\text{ P }_1^T\text{ D }^{-1}\text{ P }_2)(\text{ P }_2^T\text{ D }^{-1}\text{ P }_1)\le (\text{ P }_1^T\text{ D }^{-1}\text{ P }_1)(\text{ P }_2^T\text{ D }^{-1}\text{ P }_2). \end{aligned}$$

Proof of Lemma 1

For any vector \(\text{ c }\ne {\mathbf {0}}\), we have

$$\begin{aligned} \text{ c }^T(\text{ P }_1^T\text{ D }^{-1}\text{ P }_2)(\text{ P }_2^T\text{ D }^{-1}\text{ P }_1)\text{ c }= & {} \text{ c }^T(\text{ P }_1^T\text{ D }^{-\frac{1}{2}}\text{ D }^{-\frac{1}{2}}\text{ P }_2)(\text{ P }_2^T\text{ D }^{-\frac{1}{2}}\text{ D }^{-\frac{1}{2}}\text{ P }_1)\text{ c }\\= & {} (\text{ D }^{-\frac{1}{2}}\text{ P }_1\text{ c })^T(\text{ D }^{-\frac{1}{2}}\text{ P }_2)(\text{ D }^{-\frac{1}{2}}\text{ P }_2)^T(\text{ D }^{-\frac{1}{2}}\text{ P }_1\text{ c })\\= & {} \{(\text{ D }^{-\frac{1}{2}}\text{ P }_1\text{ c })^T(\text{ D }^{-\frac{1}{2}}\text{ P }_2)\}^2\\\le & {} (\text{ c }^T\text{ P }_1^T\text{ D }^{-\frac{1}{2}}\text{ D }^{-\frac{1}{2}}\text{ P }_1\text{ c })(\text{ P }_2^T\text{ D }^{-\frac{1}{2}}\text{ D }^{-\frac{1}{2}}\text{ P }_2)\\= & {} \text{ c }^T(\text{ P }_1^T\text{ D }^{-1}\text{ P }_1)(\text{ P }_2^T\text{ D }^{-1}\text{ P }_2)\text{ c }. \end{aligned}$$

Thus,

$$\begin{aligned} (\text{ P }_1^T\text{ D }^{-1}\text{ P }_2)(\text{ P }_2^T\text{ D }^{-1}\text{ P }_1)\le (\text{ P }_1^T\text{ D }^{-1}\text{ P }_1)(\text{ P }_2^T\text{ D }^{-1}\text{ P }_2). \end{aligned}$$

This completes the proof. \(\square \)

Next, we prove Theorem 1. Throughout, the partial derivative of a vector- or matrix-valued function with respect to a scalar variable denotes the componentwise partial derivatives; and for a vector or matrix \({\mathbf {v}}\), \(\Vert {\mathbf {v}}\Vert \) denotes the \(L_2\)-norm of \({\mathbf {v}}\).

Proof of Theorem 1

By the empirical likelihood theory in estimating equations, we know that the true values of the Lagrange parameters \(\varvec{\xi }\) and \(\varvec{\nu }\) are both zero vectors. Let \(\varvec{\theta }_0=({\mathbf {0}}^T,{\mathbf {0}}^T,\varvec{\beta }_0^T,\alpha _0)^T\) be the true value of the pooled parameter vector \(\varvec{\theta }=(\varvec{\nu }^T,\varvec{\xi }^T,\varvec{\beta }^T,\alpha )^T\). Evaluated at \(\varvec{\theta }_0\), the system of estimating equations \(\text{ U }_j(\varvec{\theta }_0)\) for j equals 1 through 4 reduces to be

$$\begin{aligned} \text{ U}_1(\varvec{\theta }_0)= & {} \text{ U }_{01}=\sum _{i=1}^n\text{ W }(\varvec{\beta }_0,\text{ Z }_i),\\ \text{ U}_2(\varvec{\theta }_0)= & {} \text{ U }_{02}=\sum _{i=1}^n\varvec{\Psi }(\varvec{\beta }_0,\text{ Z }_i,\alpha _0),\\ \text{ U}_3(\varvec{\theta }_0)= & {} \text{ U }_{03}={\mathbf {0}},\\ \mathrm{U_4}(\varvec{\theta }_0)= & {} \mathrm{U_{04}}=0. \end{aligned}$$

Clearly, \(\text{ U}_2(\varvec{\theta }_0)\), \(\text{ U}_3(\varvec{\theta }_0)\) and \(\mathrm{U_4}(\varvec{\theta }_0)\) are all unbiased estimating functions. In addition, by the definition of \(\text{ W }(\varvec{\beta },\text{ Z }_i)\), we have

$$\begin{aligned} \text{ W }(\varvec{\beta }_0,\text{ Z }_i)=\int _0^\tau \{\text{ Z }_i-{\bar{\text{ Z }}}(t)\}dM_i(t), \end{aligned}$$

where \(M_i(t)=N_i(t)-\int _0^tY_i(u)\{\lambda _0(u)+\varvec{\beta }_0^T\text{ Z }_i\}du\) is a counting process martingale. The standard martingale theory (Fleming and Harrington 1991) suggests that \(\text{ U }_{01}\) is an unbiased estimating function.

From the expression of \(\Psi _k(\varvec{\beta },\text{ Z }_i,\alpha )\), we see that \(|\Psi _k(\varvec{\beta },\text{ Z }_i,\alpha )| \le 2\) for \(k=1,\ldots ,K\). Analogous to the proof of Lemma 1 in Qin and Lawless (1994), under some regularity conditions, the maximizer \(({\widehat{\varvec{\beta }}},{\widehat{\alpha }})\) lies in the interior of the ball \(\{(\varvec{\beta },\alpha ):\parallel (\varvec{\beta },\alpha )-(\varvec{\beta }_0,\alpha _0)\parallel \le n^{-1/3}\}\) with probability 1 as \(n\rightarrow \infty \). As a result, both \({\widehat{\varvec{\beta }}}\) and \({{\widehat{\alpha }}}\) are consistent.

Now we prove the asymptotic normality of \(n^{-1/2}\text{ U }_0\) based on the martingale central limit theorem and general central limit theorem, where \(\text{ U }_0=(\text{ U }_{01}^T,\text{ U }_{02}^T,\text{ U }_{03}^T,\mathrm{U_{04}})^T\). By the martingale theory, we have

$$\begin{aligned} \text {var}(n^{-\frac{1}{2}}\text{ U }_{01})= & {} \frac{1}{n}\text {var}\left[ \sum _{i=1}^n\int _0^\tau \{\text{ Z }_i-{\bar{\text{ Z }}}(t)\}d M_i(t)\right] \\= & {} \frac{1}{n}\sum _{i=1}^n\text {var}\left[ \int _0^\tau \{\text{ Z }_i-{\bar{\text{ Z }}}(t)\}d M_i(t)\right] \\= & {} \frac{1}{n}\sum _{i=1}^n\int _0^\tau \{\text{ Z }_i-{\bar{\text{ Z }}}(t)\}^{\otimes 2}\text {var}\{d M_i(t)\}\\= & {} \frac{1}{n}\sum _{i=1}^n\int _0^\tau \{\text{ Z }_i-{\bar{\text{ Z }}}(t)\}^{\otimes 2}Y_i(t) \{d\Lambda _0(t)+\varvec{\beta }_0^T\text{ Z }_idt\}\\&{\mathop {=}\limits ^{\wedge }}&\varvec{\Sigma }. \end{aligned}$$

Using the double expectation, we get

$$\begin{aligned} E(\text{ U }_{01}^T\text{ U }_{02})=E\{E(\text{ U }_{01}^T\text{ U }_{02}|\text{ Z })\}=E\{E(\text{ U }_{01}^T|\text{ Z })\text{ U }_{02}\}={\mathbf {0}}, \end{aligned}$$

which suggests that \(\text{ U }_{01}\) is uncorrelated with \(\text{ U }_{02}\). Let \(\text{ J }=\text {var}(n^{-\frac{1}{2}}\text{ U }_{02})\). By the martingale central limit theorem and central limit theorem, \(n^{-1/2}\text{ U }_0\) is asymptotically normal with zero mean and variance-covariance matrix

$$\begin{aligned} \varvec{\Omega }=\begin{pmatrix} \varvec{\Sigma }&{} {\mathbf {0}} &{} {\mathbf {0}} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} \text{ J }&{} {\mathbf {0}} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} {\mathbf {0}} &{} {\mathbf {0}} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} {\mathbf {0}} &{} {\mathbf {0}} &{} 0 \end{pmatrix}. \end{aligned}$$

Now, we compute the expectation of the partial derivative matrix of \(\text{ U }(\varvec{\theta })\) with respect to \(\varvec{\theta }=(\varvec{\nu }^T,\varvec{\xi }^T,\varvec{\beta }^T,\alpha )^T\) when evaluated at the true parameter values; here \(\text{ U }(\varvec{\theta })=\big (\text{ U}_1^T(\varvec{\theta }),\text{ U}_2^T(\varvec{\theta }),\text{ U}_3^T(\varvec{\theta }),\mathrm{U_4}(\varvec{\theta })\big )^T\). By a careful examination, we observe that

$$\begin{aligned}&\frac{\partial \text{ U}_1}{\partial \varvec{\xi }^T}|_{\varvec{\theta }=\varvec{\theta }_0}=\left( \frac{\partial \text{ U}_2}{\partial \varvec{\nu }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right) ^T, \quad \frac{\partial \text{ U}_1}{\partial \varvec{\beta }^T}|_{\varvec{\theta }=\varvec{\theta }_0}=\left( \frac{\partial \text{ U}_3}{\partial \varvec{\nu }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right) ^T,\\&\frac{\partial \text{ U}_2}{\partial \varvec{\beta }^T}|_{\varvec{\theta }=\varvec{\theta }_0}=\left( \frac{\partial \text{ U}_3}{\partial \varvec{\xi }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right) ^T, \quad \frac{\partial \text{ U}_2}{\partial \alpha }|_{\varvec{\theta }=\varvec{\theta }_0}=\left( \frac{\partial \mathrm{U_4}}{\partial \varvec{\xi }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right) ^T. \end{aligned}$$

Besides, we have the following results,

$$\begin{aligned} \frac{1}{n}E\left( \frac{\partial \text{ U}_1}{\partial \varvec{\nu }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right)= & {} -\frac{1}{n}\sum _{i=1}^n E\left\{ \text{ W }(\varvec{\beta }_0,\text{ Z }_i)^{\otimes 2}\right\} =-\varvec{\Sigma },\\ \frac{1}{n}E\left( \frac{\partial \text{ U}_1}{\partial \varvec{\xi }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right)= & {} -\frac{1}{n}\sum _{i=1}^n E\left\{ \text{ W }(\varvec{\beta }_0,\text{ Z }_i)\varvec{\Psi }^T(\varvec{\beta }_0,\text{ Z }_i,\alpha _0)\right\} ={\mathbf {0}},\\ \frac{1}{n}E\left( \frac{\partial \text{ U}_1}{\partial \varvec{\beta }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right)= & {} \frac{1}{n}\sum _{i=1}^n E\left\{ \frac{\partial \text{ W }(\varvec{\beta },\text{ Z }_i)}{\partial \varvec{\beta }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right\} \\= & {} \frac{1}{n}\sum _{i=1}^n E\left\{ \int _0^\tau Y_i(t)\{\text{ Z }_i-{\bar{\text{ Z }}}(t)\}^{\otimes 2}dt\right\} {\mathop {=}\limits ^{\wedge }}\text{ B }_1,\\ \frac{1}{n}E\left( \frac{\partial \text{ U}_1}{\partial \alpha }|_{\varvec{\theta }=\varvec{\theta }_0}\right)= & {} \frac{1}{n}E\left( \frac{\partial \text{ U}_3}{\partial \alpha }|_{\varvec{\theta }=\varvec{\theta }_0}\right) =\left\{ \frac{1}{n}E(\frac{\partial \mathrm{U_4}}{\partial \varvec{\nu }^T}|_{\varvec{\theta }=\varvec{\theta }_0})\right\} ^T\\= & {} \left\{ \frac{1}{n}E(\frac{\partial \mathrm{U_4}}{\partial \varvec{\beta }^T}|_{\varvec{\theta }=\varvec{\theta }_0})\right\} ^T={\mathbf {0}},\\ \frac{1}{n}E\left( \frac{\partial \text{ U}_2}{\partial \varvec{\xi }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right)= & {} -\frac{1}{n}\sum _{i=1}^nE\left\{ \varvec{\Psi }(\varvec{\beta }_0,\text{ Z }_i,\alpha _0)^{\otimes 2}\right\} =-\text{ J },\\ \frac{1}{n}E\left( \frac{\partial \text{ U}_2}{\partial \varvec{\beta }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right)= & {} \frac{1}{n}\sum _{i=1}^nE\left\{ \frac{\partial \varvec{\Psi }(\varvec{\beta },\text{ Z }_i,\alpha )}{\partial \varvec{\beta }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right\} {\mathop {=}\limits ^{\wedge }}\text{ B }_2,\\ \frac{1}{n}E\left( \frac{\partial \text{ U}_2}{\partial \alpha }|_{\varvec{\theta }=\varvec{\theta }_0}\right)= & {} \frac{1}{n}\sum _{i=1}^nE\left( \frac{\partial \varvec{\Psi }(\varvec{\beta },\text{ Z }_i,\alpha )}{\partial \alpha }|_{\varvec{\theta }=\varvec{\theta }_0}\right) {\mathop {=}\limits ^{\wedge }}\text{ B }_3,\\ \frac{1}{n}E\left( \frac{\partial \mathrm{U_3}}{\partial \varvec{\beta }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right)= & {} {\mathbf {0}}\\ \frac{1}{n}E\left( \frac{\partial \mathrm{U_4}}{\partial \alpha }|_{\varvec{\theta }=\varvec{\theta }_0}\right)= & {} 0. \end{aligned}$$

Put these results together, we have

$$\begin{aligned} \text{ B }=-\frac{1}{n}E\left\{ \dfrac{\partial \text{ U }(\varvec{\theta })}{\partial \varvec{\theta }^T}|_{\varvec{\theta }=\varvec{\theta }_0}\right\} = \begin{pmatrix} \varvec{\Sigma }&{} {\mathbf {0}} &{} -\text{ B }_1 &{} {\mathbf {0}} \\ {\mathbf {0}} &{} \text{ J }&{} -\text{ B }_2 &{} -\text{ B }_3 \\ -\text{ B }_1^T &{} -\text{ B }_2^T &{} {\mathbf {0}} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} -\text{ B }_3^T &{} {\mathbf {0}} &{} 0 \end{pmatrix}. \end{aligned}$$

Next, we derive an expression for the inverse of \(\text{ B }\). For this purpose, we write

$$\begin{aligned} {\widetilde{\text{ B }}}_1=(-\text{ B }_1,{\mathbf {0}}), \quad {\widetilde{\text{ B }}}_2=(-\text{ B }_2,-\text{ B }_3), \end{aligned}$$

then the 4-by-4 block matrix \(\text{ B }\) could be rewritten as a 3-by-3 block matrix

$$\begin{aligned} \text{ B }=\begin{pmatrix} \varvec{\Sigma }&{} {\mathbf {0}} &{} {\widetilde{\text{ B }}}_1 \\ {\mathbf {0}} &{} \text{ J }&{} {\widetilde{\text{ B }}}_2 \\ {\widetilde{\text{ B }}}_1^T &{} {\widetilde{\text{ B }}}_2^T &{} {\mathbf {0}} \end{pmatrix}. \end{aligned}$$

Observe that

$$\begin{aligned}&\begin{pmatrix} \text{ I }&{} {\mathbf {0}} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} \text{ I }&{} {\mathbf {0}}\\ -{\widetilde{\text{ B }}}_1^T\varvec{\Sigma }^{-1} &{} -{\widetilde{\text{ B }}}_2^T\text{ J }^{-1} &{} \text{ I }\end{pmatrix} \begin{pmatrix} \varvec{\Sigma }&{} {\mathbf {0}} &{} {\widetilde{\text{ B }}}_1 \\ {\mathbf {0}} &{} \text{ J }&{} {\widetilde{\text{ B }}}_2 \\ {\widetilde{\text{ B }}}_1^T &{} {\widetilde{\text{ B }}}_2^T &{} {\mathbf {0}} \end{pmatrix} \begin{pmatrix} \text{ I }&{} {\mathbf {0}} &{} -\varvec{\Sigma }^{-1}{\widetilde{\text{ B }}}_1 \\ {\mathbf {0}} &{} \text{ I }&{} -\text{ J }^{-1}{\widetilde{\text{ B }}}_2 \\ {\mathbf {0}} &{} {\mathbf {0}} &{} \text{ I }\end{pmatrix}\\&=\begin{pmatrix} \varvec{\Sigma }&{} {\mathbf {0}} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} \text{ J }&{} {\mathbf {0}} \\ {\mathbf {0}} &{} {\mathbf {0}} &{} {\widetilde{\varvec{\Gamma }}} \end{pmatrix}, \end{aligned}$$

where \({\widetilde{\varvec{\Gamma }}}=-(\text{ B }_1^T\varvec{\Sigma }^{-1}\text{ B }_1+\text{ B }_2^T\text{ J }^{-1}\text{ B }_2)\), we have

$$\begin{aligned}&\text{ B }^{-1}=\text{ A }=\begin{pmatrix} \text{ I }&{} {\mathbf {0}} &{} -\varvec{\Sigma }^{-1}{\widetilde{\text{ B }}}_1 \\ {\mathbf {0}} &{} \text{ I }&{} -\text{ J }^{-1} {\widetilde{\text{ B }}}_2 \\ {\mathbf {0}} &{} {\mathbf {0}} &{} \text{ I }\end{pmatrix} \begin{pmatrix} \varvec{\Sigma }^{-1} &{} {\mathbf {0}} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} \text{ J }^{-1} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} {\mathbf {0}} &{} {\widetilde{\varvec{\Gamma }}}^{-1} \end{pmatrix} \begin{pmatrix} \text{ I }&{} {\mathbf {0}} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} \text{ I }&{} {\mathbf {0}} \\ -{\widetilde{\text{ B }}}_1^T\varvec{\Sigma }^{-1} &{} -{\widetilde{\text{ B }}}_2^T\text{ J }^{-1} &{} \text{ I }\end{pmatrix}\\&\quad =\begin{pmatrix} \varvec{\Sigma }^{-1}+\varvec{\Sigma }^{-1}{\widetilde{\text{ B }}}_1{\widetilde{\varvec{\Gamma }}}^{-1}{\widetilde{\text{ B }}}_1^T\varvec{\Sigma }^{-1} &{} \varvec{\Sigma }^{-1}{\widetilde{\text{ B }}}_1\varvec{\Gamma }^{-1}{\widetilde{\text{ B }}}_2^T\text{ J }^{-1} &{} -\varvec{\Sigma }^{-1}{\widetilde{\text{ B }}}_1{\widetilde{\varvec{\Gamma }}}^{-1}\\ \text{ J }^{-1}{\widetilde{\text{ B }}}_2{\widetilde{\varvec{\Gamma }}}^{-1}{\widetilde{\text{ B }}}_1^T\varvec{\Sigma }^{-1} &{} \text{ J }^{-1}+\text{ J }^{-1}{\widetilde{\text{ B }}}_2{\widetilde{\varvec{\Gamma }}}^{-1}{\widetilde{\text{ B }}}_2^T\text{ J }^{-1} &{} -\text{ J }^{-1}{\widetilde{\text{ B }}}_2{\widetilde{\varvec{\Gamma }}}^{-1} \\ -{\widetilde{\varvec{\Gamma }}}^{-1}{\widetilde{\text{ B }}}_1^T\varvec{\Sigma }^{-1} &{} -{\widetilde{\varvec{\Gamma }}}{\widetilde{\text{ B }}}_2^T\text{ J }^{-1} &{} {\widetilde{\varvec{\Gamma }}}^{-1} \end{pmatrix}\\&\quad {\mathop {=}\limits ^{\wedge }}\begin{pmatrix} \text{ A }_{11} &{} \text{ A }_{12} &{} -\varvec{\Sigma }^{-1}{\widetilde{\text{ B }}}_1{\widetilde{\varvec{\Gamma }}}^{-1} \\ \text{ A }_{21} &{} \text{ A }_{22} &{} -\text{ J }^{-1}{\widetilde{\text{ B }}}_2{\widetilde{\varvec{\Gamma }}}^{-1} \\ -{\widetilde{\varvec{\Gamma }}}^{-1}{\widetilde{\text{ B }}}_1^T\varvec{\Sigma }^{-1} &{} -{\widetilde{\varvec{\Gamma }}}{\widetilde{\text{ B }}}_2^T\text{ J }^{-1} &{} {\widetilde{\varvec{\Gamma }}}^{-1} \end{pmatrix}. \end{aligned}$$

Now we calculate the detailed expression of \({\widetilde{\varvec{\Gamma }}}^{-1}\), \(-{\widetilde{\varvec{\Gamma }}}^{-1}{\widetilde{\text{ B }}}_1^T\varvec{\Sigma }^{-1}\) and \(-{\widetilde{\varvec{\Gamma }}}{\widetilde{\text{ B }}}_2^T\text{ J }^{-1}\) appeared in \(\text{ A }^{-1}\).

First, we calculate \({\widetilde{\varvec{\Gamma }}}^{-1}\). Note that

$$\begin{aligned} {\widetilde{\varvec{\Gamma }}}= & {} -({\widetilde{\text{ B }}}_1^T\varvec{\Sigma }^{-1}{\widetilde{\text{ B }}}_1+{\widetilde{\text{ B }}}_2^T\text{ J }^{-1}{\widetilde{\text{ B }}}_2)\\= & {} -\begin{pmatrix} -\text{ B }_1^T \\ {\mathbf {0}} \end{pmatrix} \varvec{\Sigma }^{-1} \begin{pmatrix} -\text{ B }_1&{\mathbf {0}} \end{pmatrix} - \begin{pmatrix} -\text{ B }_2^T \\ -\text{ B }_3^T \end{pmatrix} \text{ J }^{-1} \begin{pmatrix} -\text{ B }_2&-\text{ B }_3 \end{pmatrix}\\= & {} -\begin{pmatrix} \text{ B }_1^T\varvec{\Sigma }^{-1}\text{ B }_1+\text{ B }_2^T\text{ J }^{-1}\text{ B }_2 &{} \text{ B }_2^T\text{ J }^{-1}\text{ B }_3 \\ \text{ B }_3^T\text{ J }^{-1}\text{ B }_2 &{} \text{ B }_3^T\text{ J }^{-1}\text{ B }_3 \end{pmatrix}{\mathop {=}\limits ^{\wedge }}-{\bar{\varvec{\Gamma }}}. \end{aligned}$$

Using algebraic transformation, we have

$$\begin{aligned}&\begin{pmatrix} \text{ I }&{} {\mathbf {0}} \\ -(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1} &{} \text{ I }\end{pmatrix} \begin{pmatrix} \text{ B }_1^T\varvec{\Sigma }^{-1}\text{ B }_1+\text{ B }_2^T\text{ J }^{-1}\text{ B }_2 &{} \text{ B }_2^T\text{ J }^{-1}\text{ B }_3 \\ \text{ B }_3^T\text{ J }^{-1}\text{ B }_2 &{} \text{ B }_3^T\text{ J }^{-1}\text{ B }_3 \end{pmatrix} \begin{pmatrix} \text{ I }&{} -\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3) \\ {\mathbf {0}} &{} \text{ I }\end{pmatrix}\\&\quad \quad =\begin{pmatrix} \text{ H }&{} {\mathbf {0}} \\ {\mathbf {0}} &{} \mathrm{Q} \end{pmatrix}, \end{aligned}$$

where \(\text{ H }=\text{ B }_1^T\varvec{\Sigma }^{-1}\text{ B }_1+\text{ B }_2^T\text{ J }^{-1}\text{ B }_2\) and \(\mathrm{Q} =\text{ B }_3^T\text{ J }^{-1}\text{ B }_3-(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\). Thus

$$\begin{aligned}&{\widetilde{\varvec{\Gamma }}}^{-1} = -\begin{pmatrix} \text{ I }&{} -\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3) \\ {\mathbf {0}} &{} \text{ I }\end{pmatrix} \begin{pmatrix} \text{ H }^{-1} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} \mathrm{Q^{-1}} \end{pmatrix} \begin{pmatrix} \text{ I }&{} {\mathbf {0}} \\ -(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1} &{} \text{ I }\end{pmatrix}\\&\quad =-\begin{pmatrix} \text{ H }^{-1}+\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1} &{} -\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\mathrm{Q^{-1}}\\ -\mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1} &{} \mathrm{Q^{-1}} \end{pmatrix}\\&\quad {\mathop {=}\limits ^{\wedge }} \begin{pmatrix} \text{ A }_{33} &{} \text{ A }_{34} \\ \text{ A }_{43} &{} \mathrm{A_{44}} \end{pmatrix}. \end{aligned}$$

Similarly, we have

$$\begin{aligned}&-{\widetilde{\varvec{\Gamma }}}^{-1}{\widetilde{\text{ B }}}_1^T\varvec{\Sigma }^{-1}\\&\quad =\begin{pmatrix} \text{ H }^{-1}+\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1} &{} -\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\mathrm{Q^{-1}} \\ -\mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1} &{} \mathrm{Q^{-1}} \end{pmatrix} \begin{pmatrix} -\text{ B }_1^T \\ {\mathbf {0}} \end{pmatrix} \varvec{\Sigma }^{-1} \\&\quad = \begin{pmatrix} -[\text{ H }^{-1}+\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1}]\text{ B }_1^T\varvec{\Sigma }^{-1} \mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1}\text{ B }_1^T\varvec{\Sigma }^{-1} \end{pmatrix}\\&\quad {\mathop {=}\limits ^{\wedge }}\begin{pmatrix} \text{ A }_{31}\\ \text{ A }_{41} \end{pmatrix}, \end{aligned}$$

and

$$\begin{aligned}&-{\widetilde{\varvec{\Gamma }}}^{-1}{\widetilde{\text{ B }}}_2^T\text{ J }^{-1}\\&\quad =\begin{pmatrix} \text{ H }^{-1}+\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1} &{} -\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\mathrm{Q^{-1}} \\ -\mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1} &{} \mathrm{Q^{-1}} \end{pmatrix} \begin{pmatrix} -\text{ B }_2^T \\ -\text{ B }_3^T \end{pmatrix} \text{ J }^{-1} \\&\quad = \begin{pmatrix} -[\text{ H }^{-1}+\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1}]\text{ B }_2^T\text{ J }^{-1}+\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3) \mathrm{Q^{-1}}\text{ B }_3^T\text{ J }^{-1} \\ \mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1}\text{ B }_2^T\text{ J }^{-1}-\mathrm{Q^{-1}}\text{ B }_3^T\text{ J }^{-1} \end{pmatrix}\\&\quad {\mathop {=}\limits ^{\wedge }}\begin{pmatrix} \text{ A }_{32}\\ \text{ A }_{42} \end{pmatrix}. \end{aligned}$$

So the inverse of matrix \(\text{ B }\) can be expressed as

$$\begin{aligned} \text{ A }=\begin{pmatrix} \text{ A }_{11} &{} \text{ A }_{12} &{} \text{ A }_{31}^T &{} \text{ A }_{41}^T \\ \text{ A }_{21} &{} \text{ A }_{22} &{} \text{ A }_{32}^T &{} \text{ A }_{42}^T \\ \text{ A }_{31} &{} \text{ A }_{32} &{} \text{ A }_{33} &{} \text{ A }_{34} \\ \text{ A }_{41} &{} \text{ A }_{42} &{} \text{ A }_{43} &{} \mathrm{A_{44}} \end{pmatrix}. \end{aligned}$$

From Taylor expansion, we have

$$\begin{aligned} \sqrt{n}({\widehat{\varvec{\theta }}}-\varvec{\theta }_0)=\text{ A }\times n^{-1/2}\text{ U }_{0}+o_p(1), \end{aligned}$$

where \(\text{ U }_0=(\text{ U }_{01}^T,\text{ U }_{02}^T,\text{ U }_{03}^T,\mathrm{U_{04}})^T\). It follows that \(\sqrt{n}({\widehat{\varvec{\theta }}}-\varvec{\theta }_0)\) is asymptotically normal with zero mean and variance-covariance matrix \(\text{ A }\varvec{\Omega }\text{ A }^T\). Specifically, the variance-covariance matrix of \(\sqrt{n}({\widehat{\varvec{\beta }}}-\varvec{\beta }_0)\) is

$$\begin{aligned} \varvec{\Sigma }_0= & {} \text{ A }_{31}\varvec{\Sigma }\text{ A }_{31}^T+\text{ A }_{32}\text{ J }\text{ A }_{32}^T\\= & {} \text{ H }^{-1}+\text{ H }^{-1}(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3)\mathrm{Q^{-1}}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)\text{ H }^{-1}\\= & {} [\text{ H }-(\text{ B }_2^T\text{ J }^{-1}\text{ B }_3){(\text{ B }_3^T\text{ J }^{-1}\text{ B }_3)}^{-1}(\text{ B }_3^T\text{ J }^{-1}\text{ B }_2)]^{-1}. \end{aligned}$$

This completes the proof. \(\square \)

1.2 Subgroup survival probability in the simulation study

In this subsection, we derived the specific formula for computing the subgroup survival probability in the simulation study. For illustration, we only calculated the \(t^*\)-year survival probability for subgroup \(\Omega _1\) of Model 1 in the simulation study. Other calculations follow similar procedures.

Recall that \(\Omega _1=\{(Z_1,Z_2)|Z_1\ge 0.5, Z_2=0\}\), with \(Z_1\) being uniformly distributed over [0, 1] and \(Z_2\) following a Bernoulli distribution with success probability of 0.5, which are statistically independent to each other, we have

$$\begin{aligned} P(T>t^*|Z_1\ge 0.5,Z_2=0)= & {} \frac{P(T>t^*,Z_1\ge 0.5|Z_2=0)}{P(Z_1\ge 0.5|Z_2=0)}\\= & {} \frac{P(T>t^*,Z_1\ge 0.5|Z_2=0)}{P(Z_1\ge 0.5)}\\= & {} 2P(T>t^*,Z_1\ge 0.5|Z_2=0). \end{aligned}$$

The conditional density of T given \(Z_1=z_1\) and \(Z_2=z_2\) is

$$\begin{aligned} p_{T|Z_1,Z_2}(t|z_1,z_2)=\lambda (t|z_1,z_2)S(t|z_1,z_2)=\lambda (t|z_1,z_2)\exp \left\{ -\int _0^t \lambda (u|z_1,z_2)du\right\} . \end{aligned}$$

In addition, the joint density of T and \(Z_1\) given \(Z_2=z_2\) is

$$\begin{aligned} p_{T,Z_1|Z_2}(t,z_1)= & {} p_{T|Z_1,Z_2}(t|z_1,z_2)p_{Z_1|Z_2}(z_1|z_2)\\= & {} p_{T|Z_1,Z_2}(t|z_1,z_2)p_{Z_1}(z_1)\\= & {} \lambda (t|z_1,z_2)\exp \left\{ -\int _0^t \lambda (u|z_1,z_2)du\right\} I(0<z_1<1), \end{aligned}$$

where \(I(0<z_1<1)\) is the usual indicator function which takes the value of 1 when \(0<z_1<1\) and 0 otherwise. For Model 1, we have \(\lambda (t|z_1,z_2)=2t+\beta _1 z_1+\beta _2 z_2\). Combining this with expressions in the last display, it yields

$$\begin{aligned} p_{T,Z_1|Z_2=0}(t,z_1)=(2t+\beta _1z_1)\exp (-t^2+\beta _1z_1t)I(0<z_1<1). \end{aligned}$$

After some algebraic manipulations, we have

$$\begin{aligned}&P(T>t^*,Z_1\ge 0.5|Z_2=0)=\int _{t^*}^{+\infty }dt\int _{\frac{1}{2}}^1 (2t+\beta _1z_1)\exp (-t^2+\beta _1z_1t)dz_1\\&=\int _{t^*}^{+\infty }\exp (-t^2)\\&\quad \left\{ \left( \frac{1}{\beta _1}+\frac{1}{2t}+\frac{1}{\beta _1t^2}\right) \exp (-\beta _1t/2)-\left( \frac{2}{\beta _1} +\frac{1}{t}+\frac{1}{\beta _1t^2}\right) \exp (-\beta _1t)\right\} dt\\&=\int _{-\infty }^{+\infty }\exp (-t^2)I\left( t>t^*\right) \\&\quad \left\{ \left( \frac{1}{\beta _1}+\frac{1}{2t}+\frac{1}{\beta _1t^2}\right) \exp (-\beta _1t/2)-\left( \frac{2}{\beta _1} +\frac{1}{t}+\frac{1}{\beta _1t^2}\right) \exp (-\beta _1t)\right\} dt. \end{aligned}$$

If we let g(t) denote the product of \(I\left( t>t^*\right) \) with the expressions between the large curly braces in the last integration, it follows that

$$\begin{aligned} P(T>t^*,Z_1\ge 0.5|Z_2=0)=\sqrt{\pi }E\{g(X)\}, \end{aligned}$$

where \(X\sim N(0,1/2)\). As a result, the \(t^*\)-year survival probability can be computed by using the Monte Carlo method. In the simulation studies, the Monte Carlo sampling size was 10, 000.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Li, H., Zhang, S. et al. Additive hazards model with auxiliary subgroup survival information. Lifetime Data Anal 25, 128–149 (2019). https://doi.org/10.1007/s10985-018-9426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-018-9426-7

Keywords

Navigation