Skip to main content

Advertisement

Log in

Plasmodial slime molds and the evolution of microbial husbandry

  • Original Article
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Detailed analyses into the life cycle of the soil-dwelling microbe Dictyostelium discoideum led to the conclusion that this “social amoeba” practices some form of “non-monoculture farming” via the transfer of bacteria to novel environments. Herein, we show that in myxomycetes (plasmodial slime molds or myxogastrids) a similar “farming symbiosis” has evolved. Based on laboratory studies of two representative species in the genera Fuligo and Didymium, the sexual life cycle of these enigmatic microbes that feed on bacteria was reconstructed, with reference to plasmo- and karyogamy. We document that the spores carry and transfer bacteria and hence may inoculate new habitats. The significance of this finding with respect to Ernst Haeckel’s work on myxomycetes and his concept of ecology are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Adapted from Haeckel 1878)

Similar content being viewed by others

References

  • Bodini A, Klotz S (2018) The science of ecology for a sustainable world. Ecology 1:1–33

    Google Scholar 

  • Boomsma JJ (2011) Evolutionary biology: farming writ small. Nature 469:308–309

    Article  CAS  PubMed  Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396

    Article  CAS  PubMed  Google Scholar 

  • Brock DA, Read S, Bozhchenko A, Queller DC, Strassmann JE (2013) Social amobea farmers carry defensive symbionts to protect and privatize their crops. Nat Commun 4(2385):1–7

    Google Scholar 

  • Clark J, Haskins EF (2013) The nuclear reproductive cycle in the myxomycetes: a review. Mycosphere 4:233–244

    Article  Google Scholar 

  • Dahl MB, Brejnrod AD, Unterseher M, Hoppe T, Feng Y, Novozhilov Y, Sørensen SJ, Schnittler M (2017) Genetic barcoding of dark-spored myxomycetes (Amoebozoa)—identification, evaluation and application of a sequence similarity threshold for species differentiation in NGS studies. Mol Ecol Resource 18:306–318

    Article  CAS  Google Scholar 

  • De Bary A (1859) Die Mycetozoen (Schleimpilze). Ein Beitrag zur Kenntnis der niedersten Organismen. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Gilbert SF (2006) Developmental biology, 8th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hadjivasiliou Z, Pomiankowski A (2016) Gamete signalling underlies the evolution of mating types and their number. Philos Trans R Soc B 371:2015051

    Article  CAS  Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Band 1 und 2. Verlag Georg Reimer, Berlin

    Book  Google Scholar 

  • Haeckel E (1878) Das Protistenreich. Eine populäre Übersicht über das Formengebiet der niedersten Lebewesen. Ernst Günther’s Verlag, Leipzig

    Book  Google Scholar 

  • Haeckel E (1899/1904) Kunstformen der Natur. 100 Tafeln in 10 Lieferungen. Bibliographisches Institut, Leipzig und Wien

  • Hoppe T, Kutschera U (2010) In the shadow of Darwin: Anton de Bary’s origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds. Theory Biosci 129:15–23

    Article  CAS  PubMed  Google Scholar 

  • Hoppe T, Kutschera U (2014) Chromosome numbers in representative myxomycetes: a cytogenetic study. Mycol Prog 13:189–192

    Article  Google Scholar 

  • Hoppe T, Kutschera U (2015) Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds. Plant Signal Behav 10(9):e1074268

    Google Scholar 

  • Hoppe T, Schwippert WW (2014) Hydrophobicity of myxomycete spores: an undiscribed aspect of spore ornamentation. Mycosphere 5:554–559

    Article  Google Scholar 

  • Hoppe T, Müller H, Kutschera U (2010) A new species of Physarum (Myxomycetes) from a boreal pine forest in Thuringia (Germany). Mycotaxon 114:7–14

    Article  Google Scholar 

  • Hossfeld U, Levit GS (2016) ‘Tree of life’ took root 150 years ago. Nature 540:38

    Article  CAS  PubMed  Google Scholar 

  • Hossfeld U, Watts E, Levit GS (2017) The first phylogenetic tree of plants was defined 150 years ago. Trends Plant Sci 22:99–102

    Article  CAS  PubMed  Google Scholar 

  • Kalyanasundarum I (2004) A positive ecological role for tropical myxomycetes in association with bacteria. Syst Geogr Plants 74:239–242

    Google Scholar 

  • Katz ER (2006) Kenneth Raper, Elisha Mitchell and Dictyostelium. J Biosci 31:195–200

    Article  PubMed  Google Scholar 

  • Kutschera U (2016a) Sex versus gender in sea urchins and leeches two centuries after Lamarck 1816. J Marine Sci Res Dev 6(5):1–3

    Google Scholar 

  • Kutschera U (2016b) Ernst Haeckel’s biodynamics 1866 and the occult basis of organic farming. Plant Signal Behav 11(7):e1199315

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutschera U (2016c) Haeckel’s 1866 tree of life and the origin of eukaryotes. Nat Microbiol 1(8):16114

    Article  CAS  PubMed  Google Scholar 

  • Mubarak N, Kalyanasundaram I (1991) Amylase as an extracellular enzyme from plasmodia of myxomycetes. Mycol Res 95:885–896

    Article  Google Scholar 

  • Neubert H, Nowotney W, Baumann K (1993) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs, Ceratiomyxiales, Echinosteliales, Liceales, Trichiales. Verlag Karlheinz Baumann, Gomaringen

    Google Scholar 

  • Neubert H, Nowotney W, Baumann K (1995) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs. Physarales. Verlag Karlheinz Baumann, Gomaringen

    Google Scholar 

  • Neubert H, Nowotney W, Baumann K (2000) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs, Stemonitales. Verlag Karlheinz Baumann, Gomaringen

    Google Scholar 

  • Pinoy E (1907) Rôles des bactéries dans le développement de certains Myxomycètes. Ann Inst Pasteur 21: 622–656, 686–700

  • Poulain M, Meyer M, Bozonnet J (2011) Les Myxomycètes. Sevrier: Fédèration mycologique et botanique Dauphiné-Savoie

  • Raper KB (1935) Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. J Agric Res 50:135–147

    Google Scholar 

  • Schaap P (2016) Evolution of developmental signalling in Dictyostelid social amoebas. Curr Opin Genet Dev 39:29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson SL, Rojas C (eds) (2017) Myxomycetes: biology, systematics, biogeography and ecology. Elsevier, Amsterdam

    Google Scholar 

  • Venkataramani R, Danie L (1987) Bacterial associates of the slime mould Physarum nicaraguense Macbr. Proc Indian Acad Sci 97:469–473

    Google Scholar 

Download references

Acknowledgement

We thank Dr. S. L. Stephenson (University of Arkansas, USA) for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kutschera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the Special Issue Ernst Haeckel (1834–1919): the German Darwin and his impact on modern biology. Guest Editors: U. Hossfeld, G. S. Levit, and U. Kutschera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutschera, U., Hoppe, T. Plasmodial slime molds and the evolution of microbial husbandry. Theory Biosci. 138, 127–132 (2019). https://doi.org/10.1007/s12064-019-00285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-019-00285-3

Keywords

Navigation