Skip to main content
Log in

Asymptotically optimal kinematic design of robots using motion planning

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In highly constrained settings, e.g., a tentacle-like medical robot maneuvering through narrow cavities in the body for minimally invasive surgery, it may be difficult or impossible for a robot with a generic kinematic design to reach all desirable targets while avoiding obstacles. We introduce a design optimization method to compute kinematic design parameters that enable a single robot to reach as many desirable goal regions as possible while avoiding obstacles in an environment. Our method appropriately integrates sampling-based motion planning in configuration space into stochastic optimization in design space so that, over time, our evaluation of a design’s ability to reach goals increases in accuracy and our selected designs approach global optimality. We prove the asymptotic optimality of our method and demonstrate performance in simulation for (1) a serial manipulator and (2) a concentric tube robot, a tentacle-like medical robot that can bend around anatomical obstacles to safely reach clinically-relevant goal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In fact, for any objective that can be defined with respect to a set of points on the robot, we can define the mapping f as \(f(\mathbf {d}, \mathbf {q}, \mathbf {k}) \mapsto \mathrm {Shape}(\mathbf {d}, \mathbf {q},\mathbf {k})\) for any objective-specific \({\mathcal {K}}_\mathrm {reach}\subseteq {\mathcal {K}}_\mathrm {robot}\).

  2. We remark that a default initial value of 1 for \(T_\mathrm {init}\) is suggested in Ingber (1993, 1989), and Ingber et al. (2012) and refer the reader to prior work, e.g., (Ben-Ameur 2004), for computing an appropriate \(T_\mathrm {init}\).

References

  • Baykal, C., & Alterovitz, R. (2017) Asymptotically optimal design of piecewise cylindrical robots using motion planning. In Proceedings of robotics: Science and systems, Cambridge, MA. https://doi.org/10.15607/RSS.2017.XIII.020

  • Baykal, C., Torres, L. G., & Alterovitz, R. (2015) Optimizing design parameters for sets of concentric tube robots using sampling-based motion planning. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4381–4387).

  • Ben-Ameur, W. (2004). Computing the initial temperature of simulated annealing. Computational Optimization and Applications, 29(3), 369–385.

    Article  MathSciNet  MATH  Google Scholar 

  • Bergeles, C., Gosline, A. H., Vasilyev, N. V., Codd, P., del Nido, P. J., & Dupont, P. E. (2015). Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Transactions on Robotics, 31(1), 67–84.

    Article  Google Scholar 

  • Burgner, J., Gilbert, H. B., & Webster III, R. J. (2013). On the computational design of concentric tube robots: Incorporating volume-based objectives. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1185–1190).

  • Burgner-Kahrs, J. (2015). Task-specific design of tubular continuum robots for surgical applications. In Soft robotics (pp. 222–230). New York: Springer

  • Burgner-Kahrs, J., Gilbert, H. B., Granna, J., Swaney, P. J., & Webster, III, R. J. (2014). Workspace characterization for concentric tube continuum robots. In Proceedings IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1269–1275).

  • Chocron, O. (2008). Evolutionary design of modular robotic arms. Robotica, 26(3), 323–330.

    Article  Google Scholar 

  • Denarie, L., Molloy, K., Vaisset, M., Siméon, T., & Cortés, J. (2016). Combining system design and path planning. In Proceedings of the workshop on the algorithmic foundations of robotics (WAFR).

  • Dupont, P. E., Lock, J., Itkowitz, B., & Butler, E. (2010). Design and control of concentric-tube robots. IEEE Transactions on Robotics, 26(2), 209–225.

    Article  Google Scholar 

  • Durrett, R. (2010). Probability: Theory and examples. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Gilbert, H. B., Rucker, D. C., & Webster, III, R. J. (2013). Concentric tube robots: The state of the art and future directions. In International symposium on robotics research (ISRR).

  • Gilbert, H. B., & Webster, R. J, I. I. I. (2016). Rapid, reliable shape setting of superelastic nitinol for prototyping robots. IEEE Robotics and Automation Letters, 1(1), 98–105.

    Article  Google Scholar 

  • Ha, J., Park, F. C., & Dupont, P. E. (2014). Achieving elastic stability of concentric tube robots through optimization of tube precurvature. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 864–870).

  • Ha, S., Coros, S., Alspach, A., Kim, J., & Yamane, K. (2017). Joint optimization of robot design and motion parameters using the implicit function theorem. In Proceedings of robotics: Science and systems, Cambridge, MA. https://doi.org/10.15607/RSS.2017.XIII.003

  • Ingber, L. (1989). Very fast simulated re-annealing. Mathematical and Computer Modelling, 12(8), 967–973.

    Article  MathSciNet  MATH  Google Scholar 

  • Ingber, L.: Adaptive simulated annealing (1993). https://www.ingber.com/#ASA. Accessed 15 Jan 2017.

  • Ingber, L., Petraglia, A., Petraglia, M. R., Machado, M. A. S., et al. (2012). Adaptive simulated annealing. In Stochastic global optimization and its applications with fuzzy adaptive simulated annealing (pp. 33–62). Berlin: Springer

  • Jing, G., Tosun, T., Yim, M., & Kress-Gazit, H. (2016). An end-to-end system for accomplishing tasks with modular robots. In Proceedings of the Robotics: Science and Systems (RSS).

  • Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, 30(7), 846–894.

    Article  MATH  Google Scholar 

  • Katragadda, L. K. (1997). A language and framework for robotic design. Ph.D. thesis, Carnegie Mellon University.

  • Kuntz, A., Bowen, C., & Baykal, C., et al. (2018). Kinematic design optimization of a parallel surgical robot to maximize anatomical visibility via motion planning. In Proceedings of the IEEE international conference on robotics and automation (ICRA).

  • LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, 20(5), 378–400.

    Article  Google Scholar 

  • Leger, C. (1999). Automated synthesis and optimization of robot configurations: an evolutionary approach. Ph.D. thesis, Carnegie Mellon University.

  • Locatelli, M. (2002). Simulated annealing algorithms for continuous global optimization. In Handbook of global optimization (pp. 179–229). Berlin: Springer.

  • Merlet, J. P. (2005). Optimal design of robots. In Proceedings of the Robotics: Science and Systems (RSS).

  • Morimoto, T. K., Greer, J. D., Hsieh, M. H., & Okamura, A. M. (2016). Surgeon design interface for patient-specific concentric tube robots. In Proceedings of the IEEE international conference on biomedical robotics and biomechatronics (BioRob) (pp. 41–48).

  • Morimoto, T. K., & Okamura, A. M. (2016). Design of 3-d printed concentric tube robots. IEEE Transactions on Robotics, 32(6), 1419–1430.

    Article  Google Scholar 

  • Mulgaonkar, Y., Araki, B., Koh, J. S., Guerrero-Bonilla, L., Aukes, D. M., Makineni, A., Tolley, M. T., Rus, D., Wood, R. J., & Kumar, V. (2016) The flying monkey: A mesoscale robot that can run, fly, and grasp. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 4672–4679).

  • Munkres, J. R. (2000). Topology. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  • Park, J., Chang, P., & Yang, J. (2003). Task-oriented design of robot kinematics using the grid method. International Journal of Advanced Robotics, 17(9), 879–907.

    Article  Google Scholar 

  • Plecnik, M. M., Haldane, D. W., Yim, J. K., & Fearing, R. S. (2017). Design exploration and kinematic tuning of a power modulating jumping monopod. Journal of Mechanisms and Robotics, 9(1), 011009.

    Article  Google Scholar 

  • Reif, J. H. (1979). Complexity of the mover’s problem and generalizations. In 20th Annual IEEE Symposium on Foundations of Computer Science (pp. 421–427).

  • Rucker, D. C. (2011). The mechanics of continuum robots: Model-based sensing and control. Ph.D. thesis, Vanderbilt University.

  • Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(7553), 467–475.

    Article  Google Scholar 

  • Salle, D., Bidaud, P., & Morel, G. (2004). Optimal design of high dexterity modular MIS instrument for coronary artery bypass grafting. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1276–1281).

  • Taylor, O., & Rodriguez, A. (2017). Optimal shape and motion planning for dynamic planar manipulation. In Proceedings of robotics: Science and systems, Cambridge, MA. https://doi.org/10.15607/RSS.2017.XIII.055.

  • Torres, L. G., Webster, III, R. J., & Alterovitz, R. (2012). Task-oriented design of concentric tube robots using mechanics-based models. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp 4449–4455)

  • Vijaykumar, R., Waldron, K. J., & Tsai, M. J. (1986). Geometric optimization of serial chain manipulator structures for working volume and dexterity. International Journal of Robotics Research, 5(2), 91–103.

    Article  Google Scholar 

  • Wright, C., Buchan, A., Brown, B., Geist, J., Schwerin, M., Rollinson, D., Tesch, M., & Choset, H. (2012). Design and architecture of the unified modular snake robot. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 4347–4354).

Download references

Acknowledgements

We thank Alan Kuntz for his insights and feedback on the analysis, Robert J. Webster III for valuable discussions, and Luis G. Torres for his insights into design optimization and software for evaluating designs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cenk Baykal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported in part by the National Science Foundation under Award IIS-1149965 and by the National Institutes of Health under Awards R01EB017467, R21EB017952, and R01EB024864.

This is one of several papers published in Autonomous Robots comprising the “Special Issue on Robotics Science and Systems”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baykal, C., Bowen, C. & Alterovitz, R. Asymptotically optimal kinematic design of robots using motion planning. Auton Robot 43, 345–357 (2019). https://doi.org/10.1007/s10514-018-9766-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9766-x

Keywords

Navigation