Skip to main content
Log in

Network structure and input integration in competing firing rate models for decision-making

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Making a decision among numerous alternatives is a pervasive and central undertaking encountered by mammals in natural settings. While decision making for two-option tasks has been studied extensively both experimentally and theoretically, characterizing decision making in the face of a large set of alternatives remains challenging. We explore this issue by formulating a scalable mechanistic network model for decision making and analyzing the dynamics evoked given various potential network structures. In the case of a fully-connected network, we provide an analytical characterization of the model fixed points and their stability with respect to winner-take-all behavior for fair tasks. We compare several means of input integration, demonstrating a more gradual sigmoidal transfer function is likely evolutionarily advantageous relative to binary gain commonly utilized in engineered systems. We show via asymptotic analysis and numerical simulation that sigmoidal transfer functions with smaller steepness yield faster response times but depreciation in accuracy. However, in the presence of noise or degradation of connections, a sigmoidal transfer function garners significantly more robust and accurate decision-making dynamics. For fair tasks and sigmoidal gain, our model network also exhibits a stable parameter regime that produces high accuracy and persists across tasks with diverse numbers of alternatives and difficulties, satisfying physiological energetic constraints. In the case of more sparse and structured network topologies, including random, regular, and small-world connectivity, we show the high-accuracy parameter regime persists for biologically realistic connection densities. Our work shows how neural system architecture is potentially optimal in making economic, reliable, and advantageous decisions across tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmed, B., Anderson, J.C., Douglas, R.J., Martin, K.A., Whitteridge, D. (1998). Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. Cereb Cortex, 8(5), 462–476.

    Article  CAS  PubMed  Google Scholar 

  • Andronov, A.A. (1973). Qualitative theory of second-order dynamic systems. A Halsted Press book. Wiley. ISBN 9780706512922.

  • Barranca, V.J., Zhou, D., Cai, D. (2015a). A novel characterization of amalgamated networks in natural systems. Scientific Reports, 5, 10611.

  • Barranca, V.J., Zhou, D., Cai, D. (2015b). Low-rank network decomposition reveals structural characteristics of small-world networks. Phys rev e stat nonlin soft matter phys, 92(6), 062822.

  • Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S. (2015). Signature of consciousness in the dynamics of resting-state brain activity. Proceedings of the National Academy of Sciences of the USA, 112(3), 887–892. ISSN 0027-8424. https://doi.org/10.1073/pnas.1418031112.

    Article  CAS  PubMed  Google Scholar 

  • Bendixson, I. (1901). Sur les courbes definies par des equations differentielles. Acta Math, 24, 1–88. https://doi.org/10.1007/BF02403068.

    Article  Google Scholar 

  • Binas, J., Rutishauser, U., Indiveri, G., Pfeiffer, M. (2014). Learning and stabilization of winner-take-all dynamics through interacting excitatory and inhibitory plasticity. Frontiers in Computational Neuroscience, 8, 68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogacz, R., Usher, M., Zhang, J., McClelland, J.L. (2007). Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1485), 1655–1670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogacz, R., Wagenmakers, E.J., Forstmann, B.U., Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33(1), 10–16.

    Article  CAS  PubMed  Google Scholar 

  • Brody, C.D., Romo, R., Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13(2), 204–211.

    Article  CAS  PubMed  Google Scholar 

  • Brouwer, L.E.J. (1912). Über abbildung von mannigfaltigkeiten. Mathematische Annalen, 71(4), 598–598. ISSN 1432-1807. https://doi.org/10.1007/BF01456812.

    Google Scholar 

  • Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, J.Y., Crowder, E.A., Heitz, R.P., Subraveti, C.R., Thompson, K.G., Woodman, G.F., Schall, J.D. (2010). Cooperation and competition among frontal eye field neurons during visual target selection. The Journal of Neuroscience, 30(9), 3227– 3238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craik, F.I., & Bialystok, E. (2006). Cognition through the lifespan: mechanisms of change. Trends in Cognitive Sciences (Regul. Ed.), 10(3), 131–138.

    Article  Google Scholar 

  • Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience. Cambridge: MIT press.

    Google Scholar 

  • de Lafuente, V., & Romo, R. (2006). Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proceedings of the National Academy of Sciences of the USA, 103(39), 14266–14271.

    Article  PubMed  CAS  Google Scholar 

  • Deco, G., Jirsa, V.K., McIntosh, A.R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews. Neuroscience, 12(1), 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Ding, L., & Gold, J.I. (2013). The basal Ganglia’s contributions to perceptual decision making. Neuron, 79 (4), 640–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas, R.J., & Martin, K.A. (2007). Recurrent neuronal circuits in the neocortex. Current Biology, 17(13), 496–500.

    Article  CAS  Google Scholar 

  • Dunn, F.A., & Rieke, F. (2006). The impact of photoreceptor noise on retinal gain controls. Current Opinion in Neurobiology, 16(4), 363–370.

    Article  CAS  PubMed  Google Scholar 

  • Erdos, P., & Renyi, A. (1959). On random graphs i. Publicationes Mathematicae Debrecen, 6, 290.

    Google Scholar 

  • Ermentrout, B. (1992). Complex dynamics in winner-take-all neural nets with slow inhibition. Neural Networks, 5(3), 415–431. ISSN 0893-6080. https://doi.org/10.1016/0893-6080(92)90004-3.

    Article  Google Scholar 

  • Faisal, A.A., Selen, L.P., Wolpert, D.M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9(4), 292–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fellows, L.K. (2004). The cognitive neuroscience of human decision making: a review and conceptual framework. Behavioral and Cognitive Neuroscience Reviews, 3(3), 159–172.

    Article  PubMed  Google Scholar 

  • Fitts, P.M. (1966). Cognitive aspects of information processing. 3. Set for speed versus accuracy. Journal of Experimental Psychology, 71(6), 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Fukai, T., & Tanaka, S. (1997). A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Computation, 9(1), 77–97.

    Article  CAS  PubMed  Google Scholar 

  • Ganguli, S., Bisley, J.W., Roitman, J.D., Shadlen, M.N., Goldberg, M.E., Miller, K.D. (2008). One-dimensional dynamics of attention and decision making in lIP. Neuron, 58(1), 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Gold, J.I., & Shadlen, M.N. (2002). Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36(2), 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, C.D., Coen, P., Tank, D.W. (2012). Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 484(7392), 62–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y., Chen, Z.J., Evans, A.C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 17(10), 2407–2419.

    Article  PubMed  Google Scholar 

  • Heekeren, H.R., Marrett, S., Ungerleider, L.G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews. Neuroscience, 9(6), 467–479.

    Article  CAS  PubMed  Google Scholar 

  • Hick, W.E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4(1), 11–26. https://doi.org/10.1080/17470215208416600.

    Article  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology (Lond.), 117(4), 500– 544.

    Article  CAS  Google Scholar 

  • Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA, 79(8), 2554–2558.

    Article  CAS  PubMed  Google Scholar 

  • Horn, R.A., & Johnson, C.R. (2012). Matrix Analysis. Cambridge University Press, 2nd edn. https://doi.org/10.1017/9781139020411.

  • Krizhevsky, A., Sutskever, I., Hinton, G.E. (2017). Imagenet classification with deep convolutional neural networks. Commun. ACM, 60(6), 84–90. ISSN 0001-0782. https://doi.org/10.1145/3065386.

    Article  Google Scholar 

  • Kumar, S., & Penny, W. (2014). Estimating neural response functions from fMRI. Frontiers in Neuroinformatics, 8, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • La Camera, G., Rauch, A., Thurbon, D., Luscher, H.R., Senn, W., Fusi, S. (2006). Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. Journal of Neurophysiology, 96(6), 3448–3464.

    Article  PubMed  Google Scholar 

  • London, M., Roth, A., Beeren, L., Hausser, M., Latham, P.E. (2010). Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature, 466(7302), 123–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, T., Liu, S., Li, L., Wang, Y., Zhang, S., Chen, T., Xu, Z., Temam, O., Chen, Y. (2017). Dadiannao: a neural network supercomputer. IEEE Transactions on Computers, 66(1), 73–88. ISSN 0018-9340. https://doi.org/10.1109/TC.2016.2574353.

    Article  Google Scholar 

  • Maass, W. (2000). On the computational power of winner-take-all. Neural Computation, 12(11), 2519–2535.

    Article  CAS  PubMed  Google Scholar 

  • Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain: A Journal of Neurology, 125(Pt 3), 624–639.

    Article  Google Scholar 

  • Mao, Z.H., & Massaquoi, S.G. (2007). IEEE Transactions on Neural Networks, 18(1), 55–69.

    Article  PubMed  Google Scholar 

  • Markov, N.T., Ercsey-Ravasz, M., Van Essen, D.C., Knoblauch, K., Toroczkai, Z., Kennedy, H. (2013). Cortical high-density counterstream architectures. Science, 342(6158), 1238406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markram, H., Lubke, J., Frotscher, M., Roth, A., Sakmann, B. (1997). Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. Journal of Physiology, 500(Pt 2), 409–440. ISSN 0022-3751 (Print); 0022-3751 (Linking).

    Article  CAS  PubMed  Google Scholar 

  • Marreiros, A.C., Daunizeau, J., Kiebel, S.J., Friston, K.J. (2008). Population dynamics: variance and the sigmoid activation function. NeuroImage, 42(1), 147–157.

    Article  PubMed  Google Scholar 

  • Mason, A., & Larkman, A. (1990). Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. The Journal of Neuroscience, 10(5), 1415–1428.

    Article  CAS  PubMed  Google Scholar 

  • Mason, A., Nicoll, A., Stratford, K. (1991). Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. Journal of Neuroscience, 11(1), 72–84.

    Article  CAS  PubMed  Google Scholar 

  • McKinstry, J.L., Fleischer, J.G., Chen, Y., Gall, W.E., Edelman, G.M. (2016). Imagery may arise from associations formed through sensory experience: a network of spiking neurons controlling a robot learns visual sequences in order to perform a mental rotation task. PLos ONE, 11(9), e0162155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melin, J. (2005). Does distribution theory contain means for extending poincaré–bendixson theory? Journal of Mathematical Analysis and Applications, 303(1), 81–89. ISSN 0022-247X. https://doi.org/10.1016/j.jmaa.2004.06.069.

    Article  Google Scholar 

  • Miller, P., & Katz, D.B. (2013). Accuracy and response-time distributions for decision-making: linear perfect integrators versus nonlinear attractor-based neural circuits. Journal of Computational Neuroscience, 35(3), 261–294.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munakata, Y., Herd, S.A., Chatham, C.H., Depue, B.E., Banich, M.T., O’Reilly, R.C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences (Regul. Ed.), 15(10), 453–459.

    Article  Google Scholar 

  • Patel, M., & Rangan, A. (2017). Role of the locus coeruleus in the emergence of power law wake bouts in a model of the brainstem sleep-wake system through early infancy. Journal of Theoretical Biology, 426, 82–95.

    Article  PubMed  Google Scholar 

  • Perin, R., Berger, T.K., Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. Proceedings of the National Academy of Sciences of the USA, 108(13), 5419– 5424.

    Article  CAS  PubMed  Google Scholar 

  • Platt, M.L., & Glimcher, P.W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400 (6741), 233–238.

    Article  CAS  PubMed  Google Scholar 

  • Polsky, A., Mel, B.W., Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nature Neuroscience, 7(6), 621–627.

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.

    Article  Google Scholar 

  • Ratcliff, R., Smith, P.L., Brown, S.D., McKoon, G. (2016). Diffusion decision model current issues and history. Trends in Cognitive Sciences (Regul. Ed.), 20(4), 260–281.

    Article  Google Scholar 

  • Rauch, A., La Camera, G., Luscher, H.R., Senn, W., Fusi, S. (2003). Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. Journal of Neurophysiology, 90(3), 1598–1612. ISSN 0022-3077 (Print); 0022-3077 (Linking). https://doi.org/10.1152/jn.00293.2003.

    Article  PubMed  Google Scholar 

  • Roxin, A., Riecke, H., Solla, S.A. (2004). Self-sustained activity in a small-world network of excitable neurons. Physical Review Letters, 92, 198101. https://doi.org/10.1103/PhysRevLett.92.198101.

    Article  CAS  PubMed  Google Scholar 

  • Rutishauser, U., Douglas, R.J., Slotine, J.J. (2011). Collective stability of networks of winner-take-all circuits. Neural Computation, 23(3), 735–773.

    Article  PubMed  Google Scholar 

  • Sachdev, P.S., & Malhi, G.S. (2005). Obsessive-compulsive behaviour: a disorder of decision-making. The Australian and New Zealand Journal of Psychiatry, 39(9), 757–763.

    PubMed  Google Scholar 

  • Schall, J.D. (2001). Neural basis of deciding, choosing and acting. Nature Reviews. Neuroscience, 2(1), 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Shadlen, M.N., & Newsome, W.T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LI,P) of the rhesus monkey. Journal of Neurophysiology, 86(4), 1916–1936.

    Article  CAS  PubMed  Google Scholar 

  • Shpiro, A., Curtu, R., Rinzel, J., Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97(1), 462–473.

    Article  PubMed  Google Scholar 

  • Sporns, O., & Honey, C.J. (2006). Small worlds inside big brains. Proceedings of the National Academy of Sciences of the USA, 103 (51), 19219–19220. ISSN 0027-8424 (Print); 0027-8424 (Linking). https://doi.org/10.1073/pnas.0609523103.

    Article  CAS  PubMed  Google Scholar 

  • Taube, J.S. (2007). The head direction signal: origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, N.W., & Pare, M. (2007). Temporal processing of saccade targets in parietal cortex area LI,P during visual search. Journal of Neurophysiology, 97(1), 942–947.

    Article  PubMed  Google Scholar 

  • Usher, M., & McClelland, J.L. (2001). The time course of perceptual choice: the leaky, competing accumulator model. Psychological Review, 108(3), 550–592.

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E. (2008). Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage, 43(3), 528–539. ISSN 1095-9572 (Electronic); 1053-8119 (Linking). https://doi.org/10.1016/j.neuroimage.2008.08.010.

    Article  Google Scholar 

  • Wang, X.J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36(5), 955–968.

    Article  CAS  PubMed  Google Scholar 

  • Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393(6684), 440–442. ISSN 0028-0836 (Print); 0028-0836 (Linking). https://doi.org/10.1038/30918.

    Article  CAS  PubMed  Google Scholar 

  • Wei, W., & Wang, X.J. (2016). Inhibitory control in the cortico-basal ganglia-thalamocortical loop complex regulation and interplay with memory and decision processes. Neuron, 92(5), 1093–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, X., Hahnloser, R., Seung, S.H. (2002). Double-ring network model of the head-direction system. Physical Review E, 66(4), 041902.

    Article  CAS  Google Scholar 

  • Yamada, W., Koch, C., Adams, P. (1989). Multiple channels and calcium dynamics. In Methods in neuronal modeling: from synapses to networks (pp. 97–133). Cambridge: MIT Press.

  • You, H., & Wang, D. (2017). Neuromorphic implementation of attractor dynamics in a two-variable winner-take-all circuit with nmdars: A simulation study. Frontiers in Neuroscience, 11, 40. ISSN 1662-453X. https://doi.org/10.3389/fnins.2017.00040.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grant DMS-1812478 and a Swarthmore Faculty Research Support Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor J. Barranca.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: David Terman

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Uniqueness of Fixed Point with Sigmoidal Gain

In this section of the Appendix, we provide a justification for the sufficient conditions guaranteeing a unique fixed point in the all-to-all network with sigmoidal gain discussed in Section 3.1.1, which we restate below.

Uniqueness of Fixed Point with Sigmoidal Gain:

The decision-making network model given in Eq. (1) with sigmoidal gain function f as prescribed by Eq. (2) has a unique fixed point if there exists positive constant M such that f(xi) ≤ M,∀xi, and \(\frac {wM}{N-1} < 1\) for i = 1,…,N.We consider fixed points \(x^{*} = (x_{1}^{*}, x_{2}^{*}, \dots , x_{N}^{*})\) and \(x^{\prime } = (x_{1}^{\prime }, x_{2}^{\prime } , \dots , x_{N}^{\prime })\) for Eq. (1), and demonstrate that x = x if \(\frac {wM}{N-1} < 1\). Let \(u_{i} = x_{i}^{\prime } - x_{i}^{*}\) denote the difference between the i th components of the fixed points. Since x is a fixed point, it follows that \(x^{\prime }_{i} = f(-{\sum }_{j\ne i} \frac {w}{N-1}x_{j}^{\prime } + S_{i})\). Hence,

$$ x_{i}^{*} + u_{i} = f\left( -\sum\limits_{j\ne i } \frac{w}{N-1}x_{j}^{*} + S_{i} - \sum\limits_{j\ne i} \frac{w}{N-1}u_{j}\right). $$
(14)

Since f is smooth, according to the mean value theorem

$$\begin{array}{@{}rcl@{}} &&f\left( -\sum\limits_{j\ne i } \frac{w}{N-1}x_{j}^{*} + S_{i} - \sum\limits_{j\ne i} \frac{w}{N-1}u_{j}\right) \\ &=& f\left( - \sum\limits_{j\ne i } \frac{w}{N-1}x_{j}^{*} + S_{i}\right) + f^{\prime}(c_{i})\left( - \sum\limits_{j\ne i} \frac{w}{N-1}u_{j}\right), \end{array} $$

where ci is contained in open interval \((-{\sum }_{j\ne i } \frac {w}{N-1}x_{j}^{*} + S_{i} - {\sum }_{j\ne i} \frac {w}{N-1}u_{j}, -{\sum }_{j\ne i } \frac {w}{N-1}x_{j}^{*} + S_{i})\). Given \(x_{i}^{*}\) is a fixed point, we re-express Eq. (14) as

$$\begin{array}{@{}rcl@{}} x_{i}^{*} + u_{i} &=& \!f\left( - \sum\limits_{j\ne i } \frac{w x_{j}^{*}}{N - 1} + S_{i}\right) + f^{\prime}(c_{i})\left( - \sum\limits_{j\ne i} \frac{w u_{j}}{N - 1}\right) \\ \implies u_{i} &=& -\frac{w}{N-1}f^{\prime}(c_{i})\left( \sum\limits_{j\ne i}u_{j}\right). \end{array} $$

Labeling \(a_{i} = \frac {w}{N-1}f^{\prime }(c_{i})\) for notational convenience, it follows \(u_{i} + a_{i}{\sum }_{j\ne i}u_{j} = 0\). We can rewrite this compactly in matrix notation as Au = 0, where

$$A = \left[\begin{array}{lllll} 1 & a_{1} & a_{1} & {\dots} & a_{1} \\ a_{2} & 1 & a_{2} & {\dots} & a_{2} \\ a_{3} & a_{3} & 1 & {\dots} & a_{3} \\ {\vdots} & {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ a_{N} & a_{N} & a_{N} & {\dots} & 1 \end{array}\right], $$

and \(\det (A) = {\prod }_{k = 1}^{N} (1-a_{k}) + {\sum }_{i = 1}^{N} a_{i} {\prod }_{k\ne i} (1-a_{k})\) (Horn and Johnson 2012).

Finally, assuming f(xi) ≤ M,∀xi, and \(\frac {w}{N-1}M < 1\), it follows that \(a_{i} = \frac {w}{N-1}f^{\prime }(c_{i}) \leq \frac {w}{N-1}M < 1\). As a result, det(A)≠ 0, and the linear system Au = 0 has a unique solution u = 0. This implies that x = x, demonstrating the fixed point is indeed unique.

Appendix B: Global Attraction to the Perturbed Fixed Point with Binary Gain

In Appendix B, we provide a justification for the conditions guaranteeing the existence and global attraction of the perturbed fixed point in the all-to-all network with binary gain discussed in Section 3.1.2, which we restate below.

Fig. 15
figure 15

Impact of noise on accuracy for networks with sigmoidal gain and hard difficulty tasks. Numerically computed accuracy dependence on number of alternatives, N, and lateral inhibition strength, w, for a fully-connected network with sigmoidal gain and noise of strength: aσ = 2− 8, bσ = 2− 7, cσ = 2− 6, dσ = 2− 5, eσ = 2− 4, fσ = 2− 3, gσ = 2− 2, and hσ = 2− 1. Each plot depicts the accuracy averaged over 100 fair initial conditions and tasks of hard difficulty

Global Attraction to the Perturbed Fixed Point with Binary Gain:

For non-simple and fair tasks with number of alternatives N ≥ 3, the reduced decision-making network model given in Eq. (5) with binary gain function f as prescribed by Eq. (3) is globally attracted to the perturbed fixed point such that

$$ \displaystyle \lim_{t\to \infty} x_{w} = 1, $$
(6a)
$$ \displaystyle \lim_{t\to \infty} x_{l} \in [z,z+\epsilon), $$
(6b)

for any 𝜖 > 0 under assumptions

$$ N > \max \left( \frac{2w-(S_{l}-b)}{w-(S_{l}-b)}, \frac{w}{S_{l}-b}+ 1\right), $$
(7a)
$$ w > S_{l}-b, $$
(7b)

where

$$ z = \frac{(N-1)(S_{l}-b)-w}{(N-2)w}. $$
(8)

Under assumptions (7), we first show that it is impossible for \(\frac {dx_{l}}{dt}= 0\) and thus impossible for stationary dynamics to be reached. If \(\frac {dx_{l}}{dt} = 0\), then either (i) xl = 0 and \( f\left (-wx_{l} - \frac {w}{N-1} (x_{w}-x_{l}) + S_{l}\right )= 0\), or (ii) xl = 1 and \(f\left (-wx_{l} - \frac {w}{N-1} (x_{w}-x_{l}) + S_{l}\right ) = 1\). We verify that neither of these cases are possible. Case (i) requires \(x_{w} > \frac {(S_{l}-b)(N-1)}{w}\), but assumption (7a) requires w < (Slb)(N − 1), forcing xw > 1 and making this potential fixed point impossible. Case (ii) requires \(-wx_{l} - \frac {w}{N-1} (x_{w}-x_{l}) + S_{l} \geq b\), making \(x_{w} \leq \frac {(S_{l}-b)(N-1)}{w} + 1 - (N-1)\). However, assumption (7b) requires that \((N-1) > \frac {(S_{l}-b)(N-1)}{w} + 1\), forcing xw < 0, which is impossible.

Next, to determine the state around which the system gravitates after a long time horizon, we show \(z_{l} = \frac {(N-1)(S_{l}-b) - wx_{w}}{(N-2)w}\) separates the dynamics of xl into distinct strictly increasing and strictly decreasing regimes, such that if xlzl then \(\frac {dx_{l}}{dt} >0\) and if xl > zl then \(\frac {dx_{l}}{dt}<0\). To see this, note that if \(\frac {dx_{l}}{dt}>0\), then \(f\left (-wx_{l} - \frac {w}{N-1} (x_{w}-x_{l}) + S_{l}\right ) = 1\) necessarily, and thus \(-wx_{l} - \frac {w}{N-1} (x_{w}-x_{l}) + S_{l} \geq b\). This forces \(x_{l} \leq \frac {(N-1)(S_{l}-b) - wx_{w}}{(N-2)w}\), which demonstrates \(x_{l} > z_{l} \implies \frac {dx_{l}}{dt} < 0\). An analogous argument assuming instead \(\frac {dx_{l}}{dt}<0\) yields \(x_{l} \leq z_{l} \implies \frac {dx_{l}}{dt} > 0\).

As a result, it is guaranteed after sufficient time elapses xl → [zl,zl + 𝜖), for any 𝜖 > 0. Since zl ∈ (0, 1) under assumptions (7) and xw ∈ [0, 1], we obtain, independent of xw, the upper bound \(z_{l} \leq \frac {(N-1)(S_{l}-b)}{(N-2)w} < \frac {S_{l}-b}{w}\). Thus, as t, the total input into the gain function for the w th node is − wxl + Sw > b + (SwSl) > b, and consequently xw → 1. As a result, xl → [z,z + 𝜖) for \(z = \frac {(N-1)(S_{l}-b)-w}{(N-2)w}\), which gives an attracting perturbed fixed point depending only on the model parameters.

Appendix C: Robustness of Decision-Making for Hard Difficulty Tasks

Fig. 16
figure 16

Impact of noise on accuracy for networks with binary gain and hard difficulty tasks. Numerically computed accuracy dependence on number of alternatives, N, and lateral inhibition strength, w, for a fully-connected network with binary gain and noise of strength: aσ = 2− 8, bσ = 2− 7, cσ = 2− 6, dσ = 2− 5, eσ = 2− 4, fσ = 2− 3, gσ = 2− 2, and hσ = 2− 1. Each plot depicts the accuracy averaged over 100 fair initial conditions and tasks of hard difficulty

Fig. 17
figure 17

Impact of connection removal on accuracy for networks with sigmoidal gain and hard difficulty tasks. Numerically computed accuracy dependence on number of alternatives, N, and lateral inhibition strength, w, for a fully-connected network with sigmoidal gain and connection removal of probability: a 0.003, b 0.01, c 0.1, d 0.2, e 0.4, and f 0.8. Each plot depicts the accuracy averaged over 100 fair initial conditions and tasks of hard difficulty

Fig. 18
figure 18

Impact of connection removal on accuracy for networks with binary gain and hard difficulty tasks. Numerically computed accuracy dependence on number of alternatives, N, and lateral inhibition strength, w, for a fully-connected network with binary gain and connection removal of probability: a 0.003, b 0.01, c 0.1, d 0.2, e 0.4, and f 0.8. Each plot depicts the accuracy averaged over 100 fair initial conditions and tasks of hard difficulty

In this Appendix, we provide additional figures depicting the network model decision-making dynamics subject to noise and then connection removal for hard difficulty tasks. In Figs. 15 and 16, we plot, for various choices of noise strength, the accuracy over the wN parameter space for all-to-all networks with sigmoidal and binary gain functions, respectively. Similarly, in Figs. 17 and 18, we compare the decision-making performance upon randomly removing connections with increasing probability. The resultant dynamics are analogous to those evoked in the medium difficulty case discussed in detail in Section 3.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barranca, V.J., Huang, H. & Kawakita, G. Network structure and input integration in competing firing rate models for decision-making. J Comput Neurosci 46, 145–168 (2019). https://doi.org/10.1007/s10827-018-0708-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-018-0708-6

Keywords

Navigation