Skip to main content
Log in

Chromosomal polymorphism and molecular variability in the pearly razorfish Xyrichtys novacula (Labriformes, Labridae): taxonomic and biogeographic implications

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The pearly razorfish Xyrichtys novacula (Linnaeus, 1758) is a sedentary benthic species distributed in both sides of the Atlantic Ocean and in the Mediterranean Sea. Previous cytogenetic analysis reported different diploid numbers in samples from Italy, Venezuela and Brazil. This research aims to test the hypothesis that samples from American Atlantic coast and Mediterranean Sea belong to the same single evolutionary lineage, characterized by intra-specific chromosome polymorphism. To this purpose a cytogenetic and molecular (mitochondrial COI sequences) survey was undertaken. Results revealed the existence of three different pearly razorfish molecular lineages: one present in Mediterranean Sea and two in the central and south American area, which are characterized by different karyotypes. One of these lineages shows substantial intra-population chromosomal polymorphism (2n = 45–48) determined by Robertsonian fusions that produce large metacentric chromosomes. On the whole data suggest that specimens morphologically identified as X. novacula correspond to three cryptic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucl Acids Res 25:4692–4693

    Article  CAS  PubMed  Google Scholar 

  • Almeida LAH, Nunes LA, Bitencourt JA, Molina WF, Affonso PRAM (2017) Chromosomal evolution and cytotaxonomy in wrasses (Perciformes; Labridae). J Hered 108:239–253

    Article  CAS  Google Scholar 

  • Alós J, Cabanellas-Reboredo M, Lowerre-Barbieri S (2012) Diel behaviour and habitat utilisation by the pearly razorfish during the spawning season. Mar Ecol Prog Ser 460:207–220

    Article  Google Scholar 

  • Amores A, Giles V, Thode G, Alvarez MC (1990) Adaptative character of a Robertsonian fusion in chromosomes of the fish Gobius paganellus (Pisces, Perciformes). Heredity 65:151

    Article  Google Scholar 

  • Angiulli E, Sola L, Ardizzone G, Fassatoui C, Rossi AR (2016) Phylogeography of the common pandora Pagellus erythrinus in the central Mediterranean Sea: sympatric mitochondrial lineages and genetic homogeneity. Mar Biol Res 12:4–15

    Article  Google Scholar 

  • Arai R (2011) Fish Karyotypes: a check list. Springer, Berlin

  • Artoni RF, Vicari MR, de Almeida MC, Moreira-Filho O, Bertollo LAC (2009) Karyotype diversity and fish conservation of southern field from South Brazil. Rev Fish Biol Fish 19:393–401

    Article  Google Scholar 

  • Artoni RF, Castro JP, Jacobina UP, Lima-Filho PA, da Costa GWWF, Molina WF (2015) Inferring diversity and evolution in fish by means of integrative molecular cytogenetics. Sci World J 5:365787

    Google Scholar 

  • Benvenuto C, Coscia I, Chopelet J, Sala-Bozano M, Mariani S (2017) Ecological and evolutionary consequences of alternative sex-change pathways in fish. Sci Rep 7:9084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertollo LAC (2007) Chromosome evolution in the Neotropical Erythrinidae fish family: an overview. In: Pisano E, Ozouf Costaz C, Foresti F, Kapoor BG (eds.) Fish Cytogenetics. Science Publishers, Stevenson Ranch, pp 195–211

  • Candi G, Castriota L, Andaloro F, Finoia MG, Marino G (2004) Reproductive cycle and sex inversion in razor fish, a protogynous labrid in the southern Mediterranean Sea. J Fish Biol 64:1498–1513

    Article  Google Scholar 

  • Caputo V, Caniglia ML, Machella N (1999) The chromosomal complement of Aphia minuta, a paedomorphic goby. J Fish Biol 55:455–458

    Google Scholar 

  • Cardinale M, Colloca F, Ardizzone GD (1998) Growth and reproduction of Xyrichthys novacula (Pisces: Labridae) in the Mediterranean Sea. Sci Mar 62:193–201

    Article  Google Scholar 

  • Cervigón F (1993) Los peces marinos de Venezuela, vol 2. Fundación Científica Los Roques, Caracas

    Google Scholar 

  • Cioffi MB, Bertollo LAC (2012) Chromosomal distribution and evolution of repetitive DNAs in fish. Genome Dyn 7:197–221

    Article  CAS  PubMed  Google Scholar 

  • Cioffi MB, Sánchez A, Marchal JA, Kosyakova N, Liehr T et al (2011) Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes. BMC Evol Biol 11:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Cioffi MB, Bertollo LAC, Villa MA, de Oliveira EA, Tanomtong A et al (2015) Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes). PLoS One 10:e0130199

    Article  CAS  PubMed Central  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  Google Scholar 

  • Collette BB, Rützler K (1977) Reef fishes over sponge bottoms off the mouth of the Amazon River. In: Proceedings, third international Coral Reef symposium rosenstlel school of Marine and Atmospheric Science University of Miami. Florida, USA. May 1977

  • Cowman PF, Bellwood DR (2011) Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots. J Evol Biol 24:2543–2562

    Article  CAS  PubMed  Google Scholar 

  • de Sena DCS, Molina WF (2007) Chromosomal rearrangements associated with pelagic larval duration in Labridae (Perciformes). J Exp Mar Bio Ecol 353:203–210

    Article  CAS  Google Scholar 

  • do Nascimento VD, Almeida Coelho K, Nogaroto V, de Almeida RB, Ziemniczak K et al (2018) Do multiple karyomorphs and population genetics of freshwaterdarter characines (Apareiodon affinis) indicate chromosomal speciation? Zool Anz 272:93–103

    Article  Google Scholar 

  • Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669

    Article  PubMed  Google Scholar 

  • Floeter SR, Gasparini JL (2000) The southwestern Atlantic reef fish fauna: composition and zoogeographic patterns. J Fish Biol 56:1099–1114

    Article  Google Scholar 

  • Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    Article  CAS  PubMed  Google Scholar 

  • Fricke R, Eschmeyer WN, (eds) (2018b). Catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed on 15 November 2018)

  • Fricke R, Eschmeyer WN, Fong JD (2018a) Species by family/subfamily. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (Accessed 15 November 2018)

  • Froese R, Pauly D (2018) FishBase. http://www.fishbase.org. accessed on 30 June 2018)

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hodge JR, Bellwood DR (2016) The geography of speciation in coral reef fishes: the relative importance of biogeographical barriers in separating sister-species. J Biogeogr 43:1324–1335

    Article  Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Leary SL, Underwood W, Anthony R, Cartner S, Corey D et al (2013) AVMA guidelines for the euthanasia of animals: 2013 edition. American Veterinary Medical Association, Schaumburg

  • Levan A, Fredga K, Sandberg AA, Lima-Filho PA, Rosa RS et al (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Marconato A, And VT, Marin G (1995) The mating system of Xyrichthys novacula: sperm economy and fertilization success. J Fish Biol 47:292–301

    Google Scholar 

  • Martinez PA, Zurano JP, Amado TF, Penone C, Betancurr RR et al (2015) Chromosomal diversity in tropical reef fishes is related to body size and depth range. Mol Phylogenet Evol 93:1–4

    Article  CAS  PubMed  Google Scholar 

  • Martins C (2007) Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. In: Pisano E, Ozouf Costaz C, Foresti F, Kapoor BG (eds.) Fish Cytogenetics. Science Publishers, Stevenson Ranch, pp 421–453

  • Mezzasalma M, Andreone F, Aprea G, Glaw F, Odierna G et al (2017) When can chromosomes drive speciation?: The peculiar case of the Malagasytomato frogs (genus Dyscophus). Zool Anz 268:41–46

    Article  Google Scholar 

  • Milana V, Fusari A, Rossi A, Sola L (2011) Molecular and morphological identification of an uncommon centrolophid fish. Central Europ J Biol 6:445 &#183

    Google Scholar 

  • Miloslavich MP, Díaz JM, Klein E, Alvarado JJ, Díaz C et al (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PLoS One 5:e11916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina WF, Martinez PA, Bertollo LAC, Bidau CJ (2014) Evidence for meiotic drive as an explanation for karyotype changes in fishes. Mar Genom 15:29–34

    Article  Google Scholar 

  • Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS et al (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:e1501252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirchio M, Oliveira C (2006) Citogenética de peces. Editado por Universidad de Oriente, Cumaná, Venezuela, ISBN 980–234

    Google Scholar 

  • Nirchio M, Mujica A, Oliveira C et al (2013) Pseudoplatystoma metaense and P. orinocoense (Siluriformes: Pimelodidae) from the Orinoco basin, Venezuela: cytogenetic and molecular analyses. Ital J Zool 80:526–535

    Article  Google Scholar 

  • Nirchio M, Rossi AR, Foresti F, Oliveira C (2014) Chromosome evolution in fishes: a new challenging proposal from Neotropical species. Neotrop Ichthyol 12:761–770

    Article  Google Scholar 

  • Nirchio M, Oliveira C, Siccha-Ramirez ZR, Sene VF, Sánchez-Romero OR et al (2016) Cryptic Caribbean species of Scorpaena (Actinopterygii: Scorpaeniformes) suggested by cytogenetic and molecular data. J Fish Biol 89:1947–1957

    Article  CAS  PubMed  Google Scholar 

  • Nirchio M, Oliveira C, Siccha-Ramirez ZR, Sene VF, Sola L et al (2017) The Mugil curema species complex (Pisces, Mugilidae): a new karyotype for the Pacific white mullet mitochondrial lineage. Comp Cytogenet 11:225–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. 3 software. Evolutionary Biology Center, University U, Sweden Available from: http://www.abcse/nylander/mrmodeltest2/mrmodeltest2

  • Pansonato-Alves JC, Serrano ÉA, Utsunomia R, Camacho JPM, da Costa Silva GJ et al (2014) Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium. PLoS One 9:e107169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parenti P, Randall JE (2011) Checklist of the species of the families Labridae and Scaridae: an update. Smithiana Bull 29–44

  • Parise-Maltempi PP, da Silva EL, Rens W, Dearden F, O’Brien PCM et al (2013) Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting. BMC Genet 14:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips RB (2013) Evolution of the sex chromosomes in salmonid fishes. Cytogenet Genome Res 141:177–185

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  Google Scholar 

  • Randall JE, Earle JL (2002) Review of Hawaiian Razorfishes of the Genus Iniistius (Perciformes: Labridae). Pac Sci 56:389–402

    Article  Google Scholar 

  • Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171

    Article  Google Scholar 

  • Ryberg R (2015) Molecular operational taxonomic units as approximations of species in the light of evolutionary models and empirical data from Fungi. Mol Ecol 24:5770–5777

    Article  PubMed  Google Scholar 

  • Siqueira AC, Oliveira-Santos LGR, Cowman PF, Floeter SR (2016) Evolutionary processes underlying latitudinal differences in reef fish biodiversity. Glob Ecol Biogeogr 25:1466–1476

    Article  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  PubMed  Google Scholar 

  • Thode G, Giles V, Alvarez MC (1985) Multiple Chromosome Polymorphism in Gobius paganellus (Teleostei, Perciformes). Heredity 54:3

    Article  Google Scholar 

  • Tortonese E (1970) Fauna d’Italia,“Osteichthyes”, pesci ossei, volume 1. Bologna, Edizioni Calderini

  • Utsunomia R, Pansonato Alves JC, Paiva LRS, Costa Silva GJ, Oliveira C et al (2014) Genetic differentiation among distinct karyomorphs of the wolf fish Hoplias malabaricus species complex (Characiformes, Erythrinidae) and report of unusual hybridization with natural triploidy. J Fish Biol 85:1682–1692

    Article  CAS  PubMed  Google Scholar 

  • Vasil’ev VP, Prazdnikov DV, Vasil’eva ED (2012) Chromosome polymorphism of stargazer Uranoscopis scaber (Uranoscopidae, Perciformes) from the Black Sea. J Ichthyol 52:296–300

    Article  Google Scholar 

  • Victor BC, Wellington GM, Caldow C (2001) A review of the razorfishes (Perciformes: Labridae) of the eastern Pacific Ocean. Rev Biol Trop 49(Suppl 1):101–110

    PubMed  Google Scholar 

  • Vitturi R, Lafargue F (1992) Karyotype analyses reveal inter-individual polymorphism and association of nucleolus-organizer-carrying chromosomes in Capros aper (Pisces: Zeiformes). Mar Biol 112:37–41

    Article  Google Scholar 

  • Vitturi R, Carbone P, Catalano E, Macaluso M (1984) Chromosome polymorphism in Gobius paganellus, Linneo 1758 (pisces, gobiidae). Biol Bull 167:658–668

    Article  CAS  PubMed  Google Scholar 

  • Vitturi R, Catalano E, Macaluso M, Zava B (1986) Karyotypes of nine species of the family Labridae (Pisces, Perciformes). Biol Zent Bl 105:519–530

    Google Scholar 

  • Vitturi R, Catalano E, Lo Conte MR, Spampinato P (1989) Ag-NORs and C-banding pattern of the labrid species Xyrichthys novacula (L.) (Pisces, Perciformes). Biol Zent Bl 108:263–266

    Google Scholar 

  • Westneat MW (2002) Labridae. In: Carpenter KE (ed) The living marine resources of the Western Central Atlantic. Bony fishes part 2 (Opistognathidae to Molidae), sea turtles and marine mammals. FAO, Rome, pp 1701–1739

    Google Scholar 

  • Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol 36:370–390

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by Consejo de Investigación, Universidad de Oriente-CIUDO, Venezuela (to M.N. and J.I.G.), Grant, no. Cl-6-030601-1793/12, by Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP, Brazil and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brazil (to C.O. and F.F.), and by Sapienza University of Rome, Italy, Progetto Università 2014 (to V.M. and A.R.). We are grateful to Elisa Angiulli and Mariangela Coriandri (Sapienza University of Rome, Italy), who kindly helped in the collection of fishes in Italy and to Regulo López and Juan Marcano (Universidad de Oriente) who helped in the collection of fishes in Margarita and Cubagua Islands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Rita Rossi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirchio, M., Gaviria, J.I., Siccha-Ramirez, Z.R. et al. Chromosomal polymorphism and molecular variability in the pearly razorfish Xyrichtys novacula (Labriformes, Labridae): taxonomic and biogeographic implications. Genetica 147, 47–56 (2019). https://doi.org/10.1007/s10709-019-00051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-019-00051-9

Keywords

Navigation