Skip to main content
Log in

Spatio-temporal population genetic structure, relative to demographic and ecological characteristics, in the freshwater snail Biomphalaria pfeifferi in Man, western Côte d’Ivoire

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Combining the analysis of spatial and temporal variation when investigating population structure enhances our capacity for unravelling the biotic and abiotic factors responsible for microevolutionary change. This work aimed at measuring the spatial and temporal genetic structure of populations of the freshwater snail Biomphalaria pfeifferi (the intermediate host of the trematode Schistosoma mansoni) in relation to the mating system (self-fertilization), demography, parasite prevalence and some ecological parameters. Snail populations were sampled four times in seven human-water contact sites in the Man region, western Côte d’Ivoire, and their variability was measured at five microsatellite loci. Limited genetic diversity and high selfing rates were observed in the populations studied. We failed to reveal an effect of demographic and ecological parameters on within-population diversity, perhaps as a result of a too small number of populations. A strong spatial genetic differentiation was detected among populations. The temporal differentiation within populations was high in most populations, though lower than the spatial differentiation. All estimates of effective population size were lower than seven suggesting a strong effect of genetic drift. However, the genetic drift was compensated by high gene flow. The genetic structure within and among populations reflected that observed in other selfing snail species, relying on high selfing rates, low effective population sizes, environmental stochasticity and high gene flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Tian-Bi et al. (2013)

Fig. 2

Similar content being viewed by others

References

  • Anderson RM, May RM (1979) Prevalence of schistosome infections within molluscan populations: observed patterns and theoretical predictions. Parasitology 79:63–94

    Article  CAS  PubMed  Google Scholar 

  • Anderson CD, Epperson BK, Fortin MJ et al (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

    Article  PubMed  Google Scholar 

  • Assaré RK, Lai YS, Yapi A et al (2015) The spatial distribution of Schistosoma mansoni infection in four regions of western Côte d’Ivoire. Geospat Health 10:345

    Article  PubMed  Google Scholar 

  • Assaré RK, Tian-Bi Y-NT, Yao PK et al (2016) Sustaining control of schistosomiasis mansoni in western Côte d’Ivoire: results from a SCORE study, one year after initial praziquantel administration. PLoS Negl Trop Dis 10:e0004329

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300

    Google Scholar 

  • Blair L, Webster JP (2007) Dose-dependent schistosome-induced mortality and morbidity risk elevates host reproductive effort. J Evol Biol 20:54–61

    Article  CAS  PubMed  Google Scholar 

  • Bousset L, Henry P-Y, Sourrouille P, Jarne P (2004) Population biology of the invasive freshwater snail Physa acuta approached through genetic markers, ecological characterization and demography. Mol Ecol 13:2023–2036

    Article  CAS  PubMed  Google Scholar 

  • Brown D (1994) Freshwater snails of Africa and their medical importance, 2nd edn. Taylor and Francis Ltd, London

    Google Scholar 

  • Campbell G, Noble LR, Rollinson D et al (2010) Low genetic diversity in a snail intermediate host (Biomphalaria pfeifferi Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. Mol Ecol 19:241–256

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charbonnel N, Angers B, Rasatavonjizay R et al (2002a) Evolutionary aspects of the metapopulation dynamics of Biomphalaria pfeifferi, the intermediate host of Schistosoma mansoni. J Evol Biol 15:248–261

    Article  Google Scholar 

  • Charbonnel N, Angers B, Rasatavonjizay R et al (2002b) The influence of mating system, demography, parasites and colonisation on the population structure of Biomphalaria pfeifferi in Madgascar. Mol Ecol 11:2213–2228

    Article  CAS  PubMed  Google Scholar 

  • Charbonnel N, Quesnoit M, Razatavonjizay R et al (2002c) A spatial and temporal approach to microevolutionary forces affecting population biology in the freshwater snail Biomphalaria pfeifferi. Am Nat 160:741–755

    Article  CAS  PubMed  Google Scholar 

  • Charbonnel N, Rasatavonjizay R, Sellin E et al (2005) The influence of genetic factors and population dynamics on the mating system of the hermaphroditic snail Biomphalaria pfeifferi. Oikos 108:283–296

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D (2010) Elements of evolutionary genetics. Greenwood Village (Colorado) Roberts Roberts and Company Publisher

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  CAS  PubMed  Google Scholar 

  • Cornuet J-M, Piry S, Luikart G et al (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000

    CAS  PubMed  PubMed Central  Google Scholar 

  • David P, Pujol B, Viard F et al (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487

    Article  CAS  PubMed  Google Scholar 

  • De Kock KN, Wolmarans CT, Bornman M (2004) Distribution and habitats of Biomphalaria pfeifferi, snail intermediate host of Schistosoma mansoni, in South Africa. Water SA 30:29–36

    Google Scholar 

  • Dillon RT (2000) The ecology of freshwater molluscs. Cambridge University Press

  • Ebert D, Carius HJ, Little T, Decaestecker E (2004) The evolution of virulence when parasites cause host castration and gigantism. Am Nat 164:S19–S32

    Article  PubMed  Google Scholar 

  • Escobar JS, Nicot A, David P (2008) The difference sources of variation in inbreeding depression, heterosis and outbreeding depression in a metapopulation of Physa acuta. Genetics 180:1593–1608

    Article  PubMed  PubMed Central  Google Scholar 

  • Escobar JS, Auld JR, Correa AC et al (2011) Patterns of mating-system evolution in hermaphroditic animals: correlations among selfing rate, inbreeding depression and delayed selfing: patterns of mating-system evolution in hermaphroditic animals. Evolution 65:1233–1253

    Article  PubMed  Google Scholar 

  • Frandsen F, Christensen N (1984) An introduction guide to the identification of cercariae from African freshwater snail with special reference to cercariea of trematode species of medical and veterinary importance. Acta Trop 41:181–202

    CAS  PubMed  Google Scholar 

  • Frichot E, François O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929

    Article  Google Scholar 

  • Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 196:973–983

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) An MCMC approach for joint inference of population structure and inbreeding rates from multi-locus genotype data. Genetics (online)

  • Gow JL, Noble LR, Rollinson D et al (2007) Contrasting temporal dynamics and spatial patterns of population genetic structure correlate with differences in demography and habitat between two closely related African freshwater snails. Biol J Linn Soc Lond 90:747–760

    Article  Google Scholar 

  • Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci USA 87:3566–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Sunderland (Massachusetts)

    Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont AR (ed) Genetics and the evolution of aquatic organisms. Chapman and Hall, London, pp 122–134

    Google Scholar 

  • Howells EJ, Willis BL, Bay LK, Oppen MJ (2013) Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the great barrier reef. Mol Ecol 22:3693–3708

    Article  CAS  PubMed  Google Scholar 

  • Hui TYJ, Burt A (2015) Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm. Genetics 200:285–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingvarsson PK (2002) A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution 56:2368–2373

    Article  PubMed  Google Scholar 

  • Jarne P (1995) Mating system, bottlenecks and genetic polymorphism in hermaphroditic animals. Genet Res 65:193–207

    Article  Google Scholar 

  • Jarne P, Delay B (1991) Population genetics of freshwater snails. Trends Ecol Evol 6:383–386

    Article  CAS  PubMed  Google Scholar 

  • Jarne P, Pointier J-P, David P, Koene JM (2010) Basommatophoran Gastropods. In: Córdoba-Aguilar, Leonard JL (eds) (eds ) The evolution of primary sexual characters in animals. Oxford University Press, Oxford, pp 173–196

    Google Scholar 

  • Jensen LF, Hansen MM, Carlsson J et al (2005) Spatial and temporal genetic differentiation and effective population size of brown trout (Salmo trutta, L.) in small Danish rivers. Conserv Genet 6:615–621

    Article  Google Scholar 

  • Kalinowski ST, Waples RS (2002) Relationship of effective to census size in fluctuating populations. Conserv Biol 16:129–136

    Article  Google Scholar 

  • Kengne-Fokam AC, Nana-Djeunga HC, Djuikwo-Teukeng FF, Njiokou F (2016) Analysis of mating system, fecundity, hatching and survival rates in two Schistosoma mansoni intermediate hosts (Biomphalaria pfeifferi and Biomphalaria camerunensis) in Cameroon. Parasit Vectors 9:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkwood BR, Sterne JAC (2003) Essentials of medical statistics, 2nd edn. Blackwell Science Ltd, Malden

    Google Scholar 

  • Kovach AI, Breton TS, Berlinsky DL et al (2010) Fine-scale spatial and temporal genetic structure of Atlantic cod off the Atlantic coast of the USA. Mar Ecol Prog Ser 410:177–195

    Article  CAS  Google Scholar 

  • Lamy T, Pointier J-P, Jarne P, David P (2012) Testing metapopulation dynamics using genetic, demographic and ecological data. Mol Ecol 21:1394–1410

    Article  CAS  PubMed  Google Scholar 

  • Lamy T, Gimenez O, Pointier J-P et al (2013) Metapopulation dynamics of species with cryptic life stages. Am Nat 181:479–491

    Article  PubMed  Google Scholar 

  • Lively CM (2010) A review of Red Queen models for the persistence of obligate sexual reproduction. J Hered 101:S13–S20

    Article  PubMed  Google Scholar 

  • Loreau M, Baluku B (1987) Growth and demography of populations of Biomphalaria pfeifferi (Gastropoda, Planorbidae) in the laboratory. J Molluscan Stud 53:171–177

    Article  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA et al (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Meunier C, Tirard C, Hurtrez-Boussès S et al (2001) Lack of molluscan host diversity and the transmission of an emerging parasitic disease in Bolivia. Mol Ecol 10:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Mintsa Nguema RM, Langand J, Galinier R et al (2013) Genetic diversity, fixation and differentiation of the freshwater snail Biomphalaria pfeifferi (Gastropoda, Planorbidae) in arid lands. Genetica 141:171–184

    Article  CAS  PubMed  Google Scholar 

  • Mitta G, Gourbal B, Grunau C, Knight M, Bridger JM, Théron A (2017) The compatibility between Biomphalaria glabrata snails and Schistosoma mansoni: an increasingly complex puzzle. Adv Parasitol 97:111–145

    Article  CAS  PubMed  Google Scholar 

  • Mouahid G, Idris MA, Verneau O, Théron A, Shaban MM, Moné H (2012) A new chronotype of Schistosoma mansoni: adaptive significance. Trop Med Int Health 17:727–732

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Palm S, Dannewitz J, Järvi T et al (2003) Lack of molecular genetic divergence between sea-ranched and wild sea trout (Salmo trutta). Mol Ecol 12:2057–2071

    Article  CAS  PubMed  Google Scholar 

  • Pauls SU, Alp M, Bálint M et al (2014) Integrating molecular tools into freshwater ecology: developments and opportunities. Freshw Biol 59:1559–1576

    Article  Google Scholar 

  • Pflüger W (1976) Ecological studies in Madagascar of Biomphalaria pfeifferi, intermediate host of Schistosoma mansoni. 1. Seasonal variations and epidemiological features in the endemic area of Ambositra. Arch Inst Pasteur Madagascar 45:9–114

    Google Scholar 

  • Pollak E (1987) On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics 117:353–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porcher E, Giraud T, Lavigne C (2006) Genetic differentiation of neutral markers and quantitative traits in predominantly selfing metapopulations: confronting theory and experiments with Arabidopsis thaliana. Genet Res 87:1–12

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raso G, Matthys B, N’Goran EK et al (2005) Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Côte d’Ivoire. Parasitology 131:97–108

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (2015) Genepop 4.4 for Windows/Linux/Mac OS X

  • Rowe G, Sweet M, Beebee T (2017) An introduction to molecular ecology, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Sire C, Durand P, Pointier JP, Théron A (1999) Genetic diversity and recruitment pattern of Schistosoma mansoni in a Biomphalaria glabrata snail population: a field study using random-amplified polymorphic DNA markers. J Parasitol 85:436–441

    Article  CAS  PubMed  Google Scholar 

  • Städler T, Jarne P (1997) Population biology, genetic structure, and mating system parameters. In: Streit B, Städler T, Lively CM (eds) Ecology and evolution of freshwater organisms. Birkhaüser Verlag, Basel, pp 231–262

    Chapter  Google Scholar 

  • Stat Soft (2005) STATISTICA (Data analysis software) 7.1 ed. Paris

  • Théron A (1986) Polymorphisme des œufs de Schistosoma mansoni dans le foyer Guadeloupéen (Antilles Françaises): présence de “S. rodhaini-like” parasites? Acta Trop 43:335–342

    PubMed  Google Scholar 

  • Tian-Bi TY-N, N’Goran KE, N’Guetta S-P et al (2008) Prior selfing and the selfing syndrome in animals: an experimental approach in the freshwater snail Biomphalaria pfeifferi. Genet Res 90:61–72

    Article  Google Scholar 

  • Tian-Bi TY-N, Jarne P, Konan KJ-N et al (2013) Contrasting the distribution of phenotypic and molecular variation in the freshwater snail Biomphalaria pfeifferi, the intermediate host of Schistosoma mansoni. Heredity 110:466–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Trouvé S, Degen L, Renaud F, Goudet J (2003) Evolutionary implications of a high selfing rate in the freshwater snail Lymnaea truncatula. Evolution 57:2303–2314

    Article  PubMed  Google Scholar 

  • Van Leeuwen CH, Huig N, Van Der Velde G et al (2013) How did this snail get here? Several dispersal vectors inferred for an aquatic invasive species. Freshwat Biol 58:88–99

    Article  Google Scholar 

  • Viard F, Justy F, Jarne P (1997) Population dynamics inferred from temporal variation at microsatellite loci in the selfing snail Bulinus truncatus. Genetics 146:973–982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vucetich JA, Waite TA, Nunney L (1997) Fluctuating population size and the ratio of effective to census population size. Evolution 51:2017–2021

    Article  PubMed  Google Scholar 

  • Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS (1989) Temporal variation in allele frequencies: testing the right hypothesis. Evolution 43:1236–1251

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Whitehorn PR, Tinsley MC, Brown MJF et al (2011) Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proc R Soc Lond B Biol Sci 278:1195–1202

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F ST ≠ 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • WHO (2004) Agir contre les vers. World Health Organization, Geneva

    Google Scholar 

  • Woolhouse MEJ (1992) Population biology of the freshwater snail Biomphalaria pfeifferi in the Zimbabwe highveld. J Appl Ecol 29:687–694

    Article  Google Scholar 

  • Woolhouse MEJ, Chandiwana SK (1989) Spatial and temporal heterogeneity in the population dynamics of Bulinus globosus and Biomphalaria pfeifferi and in the epidemiology of their infection with schistosomes. Parasitology 98:21–34

    Article  PubMed  Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431

    Google Scholar 

Download references

Acknowledgements

We thank two reviewers for a series of useful comments. This study received financial support from the Swiss Agency for Development and Cooperation (SDC) allocated to the Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS) via a project entitled “Contribution to the process of national reconciliation in Côte d’Ivoire”. We are grateful to the Swiss Tropical and Public Health Institute (Swiss TPH) for having supported the purchase of all the genetic analysis materials. We thank the Centre National de Recherche Agronomique (CNRA) for having allowed snail genotyping in the Laboratoire Central de Biotechnologie. We are also grateful to Rodolphe Dieugbé from ODAFEM-Man for his assistance during snail sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves-Nathan T. Tian-Bi.

Ethics declarations

Conflict of interest

Author Yves-Nathan T. Tian-Bi declares that he has no conflict of interest. Author Jean-Noël K. Konan declares that he has no conflict of interest. Author Abdourahamane Sangaré declares that he has no conflict of interest. Author Enrique Ortega-Abboud declares that he has no conflict of interest. Author Jürg Utzinger declares that he has no conflict of interest. Author Eliézer K. N’Goran declares that he has no conflict of interest. Author Philippe Jarne declares that he has no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian-Bi, YN.T., Konan, JN.K., Sangaré, A. et al. Spatio-temporal population genetic structure, relative to demographic and ecological characteristics, in the freshwater snail Biomphalaria pfeifferi in Man, western Côte d’Ivoire. Genetica 147, 33–45 (2019). https://doi.org/10.1007/s10709-018-0049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-018-0049-4

Keywords

Navigation