Skip to main content
Log in

Effects of Fructose and Overexpression of Shock-Related Gene groL on Plantaricin Q7 Production

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The effects of fructose on plantaricin Q7 biosynthesis in Lactobacillus plantarum (L. plantarum) Q7 were investigated. Fructose induced and accelerated plantaricin Q7 production in the early stages of biosynthesis. Two-dimensional electrophoresis and quantitative real-time reverse transcriptase PCR (qRT-PCR) revealed that shock-related proteins were overexpressed in L. plantarum grown in MRS-fructose compared with cultures grown in MRS broth. A preheat-shock (PHS) treatment was used to overexpress shock-related proteins to enhance plantaricin Q7 production. The final plantaricin Q7 level reached 2873.08 IU/mL following PHS treatment, which was 23.36% higher than that obtained using a control strategy without PHS treatment. qRT-PCR analyses indicated that only groL was induced (by 10-fold) following PHS treatment. Evidently, groL plays a critical role in plantaricin Q7 biosynthesis. These results demonstrate that PHS treatment is an efficient approach to improving plantaricin Q7 production. The information obtained in this study may increase the amount of efficient antimicrobial peptide production using L. plantarum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84(5–6):593–604

    Article  Google Scholar 

  2. Nieto-Lozano JC, Reguera-Useros JI, Peláez-Martínez MD, De la Torre AH (2006) Effect of a bacteriocin produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens on Spanish raw meat. Meat Sci 72(1):57–61

    Article  CAS  Google Scholar 

  3. Liu H, Zhang LW, Yi HX, Han X, Gao W, Chi CL, Song W, Li HY, Liu CG (2016) A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese. Word J Microbiol Biotechnol 32(2):21

    Article  Google Scholar 

  4. Teneva D, Denkova R, Goranov B, Denkova Z, Kostov G (2017) Antimicrobial activity of Lactobacillus plantarum strains Salmonella pathogens. Ukrainim Food J 6(1):125–133

    CAS  Google Scholar 

  5. Liu H, Zhang LW, Yi HX, Yi HX, Han X, Chi CL (2016) Identification and characterization of plantaricin Q7, a novel plantaricin produced by Lactobacillus plantarum Q7. LWT-Food Sci Technol 71:386–390

    Article  CAS  Google Scholar 

  6. Denkova R, Denkova Z, Yanakieva V, Blazheva D (2013) Antimicrobial activity of probiotic lactobacilli, bifidobacteria and propionic acid bacteria, isolated from different sources. Microbial pathogens and strategies for combating them: science, technology and education. pp 857–864

  7. Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Pept Sci 55(1):50–61

    Article  CAS  Google Scholar 

  8. Denkova R, Goranov B, Teneva D, Denkova Z, Kostov G (2017) Antimicrobial research: novel bioknowledge and educational programs. A ntimicrobial activity of probiotic microorganisms: mechanisms of interaction and methods of examination. pp 201–212

  9. O’Shea EF, Cotter PD, Ross RP, Hill C (2013) Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Curp Opin Biotechnol 24(2):130–134

    Article  Google Scholar 

  10. Mataragas M, Metaxopoulos J, Galiotou M, Drosinos EH (2003) Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci 64(3):265–271

    Article  CAS  Google Scholar 

  11. Todorov SD, Dicks LMT (2005) Lactobacillus plantarum isolated from molasses produces bacteriocins active against gram-negative bacteria. Enzym Microb Technol 36(2):318–326

    Article  CAS  Google Scholar 

  12. Settanni L, Valmorri S, Suzzi G, Corsetti A (2008) The role of environmental factors and medium composition on bacteriocin-like inhibitory substances (BLIS) production by Enterococcus mundtii strains. Food Microbiol 25(5):722–728

    Article  CAS  Google Scholar 

  13. Abo-Amer AE (2011) Optimization of bacteriocin production by Lactobacillus acidophilus AA11, a strain isolated from Egyptian cheese. Ann Microbiol 61(3):445–452

    Article  CAS  Google Scholar 

  14. Leroy F, De Winter T, Adriany T, Adriany T, Neysens P, De Vuyst L (2006) Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471. Int J Food Microbiol 112(2):102–111

    Article  CAS  Google Scholar 

  15. Kim MH, Kong YJ, Baek H, Hyun HH (2006) Optimization of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp. GO5. J Biotechnol 121(1):54–61

    Article  CAS  Google Scholar 

  16. Schirru S, Favaro L, Mangia N, Basaglia M, Casella S, Comunian R, Fancello F, Franco BDGD, Oliveira RPD, Todorov SD (2014) Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and optimised commercial MRS medium. Ann Microbiol 64(1):321–331

    Article  CAS  Google Scholar 

  17. Todorov SD, Dicks LMT (2009) Effect of modified MRS medium on production and purification of antimicrobial peptide ST4SA produced by Enterococcus mundtii. Anaerobe 15(3):65–73

    Article  CAS  Google Scholar 

  18. Leroy F, Vankrunkelsven S, De Greef J, De Vuyst L (2003) The stimulating effect of a harsh environment on the bacteriocin activity by Enterococcus faecium RZS C5 and dependency on the environmental stress factor used. Int J Food Microbiol 83(1):27–38

    Article  CAS  Google Scholar 

  19. Pongtharangkul T, Demirci A (2004) Evaluation of agar diffusion bioassay for nisin quantification. Appl Microbiol Biotechnol 65(3):268–272

    Article  CAS  Google Scholar 

  20. Ren XD, Chen XS, Zeng X, Wang LT, Mao ZG (2015) Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products. Bioprocess Biosyst Eng 38(6):1113–1125

    Article  CAS  Google Scholar 

  21. Cho GS, Hanak A, Huch M, Holzapfel WH, Franz CMAP (2010) Investigation into the potential of bacteriocinogenic Lactobacillus plantarum BFE 5092 for biopreservation of raw turkey meat. Probiotics Antimicrob 2(4):241–249

    Article  Google Scholar 

  22. Nielsen DS, Cho GS, Hanak A, Huch M, Franz CMAP, Arneborg N (2010) The effect of bacteriocin-producing lactobacillus plantarum, strains on the intracellular pH of sessile and planktonic Listeria monocytogenes, single cells. Int J Food Microbiol 141(11):S53–S59

    Article  Google Scholar 

  23. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  Google Scholar 

  24. Chen DH, Madan D, Weaver J, Lin Z, Schroder GF, Chiu W, Rye HS (2013) Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 153(6):1354–1365

    Article  CAS  Google Scholar 

  25. Horwich AL, Farr GW, Fenton WA (2006) GroEL− GroES-mediated protein folding. Chem Rev 106(5):1917–1930

    Article  CAS  Google Scholar 

  26. Wang JM, Chen LL (2003) Domain motions in GroEL upon binding of an oligopeptide. J Mol Biol 334(3):489–499

    Article  CAS  Google Scholar 

  27. Marc J, Grousseau E, Lombard E, Sinskey AJ, Gorret N, Guillouet SE (2017) Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metab Eng 42:74–84

    Article  CAS  Google Scholar 

  28. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol 69(8):4951–4965

    Article  CAS  Google Scholar 

  29. Suo YK, Luo S, Zhang YA, Liao ZP, Wang JF (2017) Enhanced butyric acid tolerance and production by class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755. J Ind Microbiol Biotechnol 44(8):1145–1156

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Science Foundation of China (NO.31771988, NO. 31571850 and NO.31771987), Applied Technology Research & Development Plan of Heilongjiang Province (China) (GA16B201-2), and Shandong province key science & technology plan 2017NC210005, National key research and development program(2018YFC1604305-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Han or Lanwei Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Han, X., Zhang, L. et al. Effects of Fructose and Overexpression of Shock-Related Gene groL on Plantaricin Q7 Production. Probiotics & Antimicro. Prot. 12, 32–38 (2020). https://doi.org/10.1007/s12602-019-09537-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09537-6

Keywords

Navigation