1932

Abstract

Microkinetic analysis plays an important role in catalyst design because it provides insight into the fundamental surface chemistry that controls catalyst performance. In this review, we summarize the development of microkinetic models and the inclusion of scaling relationships in these models. We discuss the importance of achieving stoichiometric and thermodynamic consistency in developing microkinetic models. We also outline how analysis of the maximum rates of elementary steps can be used to determine which transition states and adsorbed intermediates are kinetically significant, allowing the derivation of general reaction kinetics rate expressions in terms of changes in binding energies of the relevant transition states and intermediates. Through these analyses, we present how to predict optimal surface coverages and binding energies of adsorbed species, as well as the extent of potential rate improvement for a catalytic system. For systems in which the extent of potential rate improvement is small because of limitations imposed by scaling relations, different approaches, including the addition of promoters and formation of catalysts containing multiple functionalities, can be used to break the scaling relations and obtain further rate enhancement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084103
2018-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/9/1/annurev-chembioeng-060817-084103.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084103&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Boudart M 2000. From the century of the rate equation to the century of the rate constants: a revolution in catalytic kinetics and assisted catalyst design. Catal. Lett. 65:1–31–3
    [Google Scholar]
  2. 2.  Temkin MI, Pyzhev V 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim 12:3217–22
    [Google Scholar]
  3. 3.  Zhang S, Broadbelt LJ, Androulakis IP, Ierapetritou MG 2014. Reactive flow simulation based on the integration of automated mechanism generation and on-the-fly reduction. Energy Fuels 28:74801–11
    [Google Scholar]
  4. 4.  Gao CW, Allen JW, Green WH, West RH 2016. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms. Comput. Phys. Commun. 203:212–25
    [Google Scholar]
  5. 5.  Khan SS, Zhang Q, Broadbelt LJ 2009. Automated mechanism generation. Part 1: mechanism development and rate constant estimation for VOC chemistry in the atmosphere. J. Atmos. Chem. 63:2125–56
    [Google Scholar]
  6. 6.  Khan SS, Broadbelt LJ 2009. Automated mechanism generation. Part 2: application to atmospheric chemistry of alkanes and oxygenates. J. Atmos. Chem. 63:2157–86
    [Google Scholar]
  7. 7.  Susnow RG, Dean AM, Green WH, Peczak P, Broadbelt LJ 1997. Rate-based construction of kinetic models for complex systems. J. Phys. Chem. A 101:203731–40
    [Google Scholar]
  8. 8.  Medford AJ, Lausche AC, Abild-Pedersen F, Temel B, Schjødt NC et al. 2013. Activity and selectivity trends in synthesis gas conversion to higher alcohols. Top. Catal. 57:1–4135–42
    [Google Scholar]
  9. 9.  Zhao ZJ, Li Z, Cui Y, Zhu H, Schneider WF et al. 2017. Importance of metal-oxide interfaces in heterogeneous catalysis: a combined DFT, microkinetic, and experimental study of water-gas shift on Au/MgO. J. Catal. 345:157–69
    [Google Scholar]
  10. 10.  Yoo JS, Abild-Pedersen F, Nørskov JK, Studt F 2014. Theoretical analysis of transition-metal catalysts for formic acid decomposition. ACS Catal 4:41226–33
    [Google Scholar]
  11. 11.  Wang G, Zhao Y, Cai Z, Pan Y, Zhao X et al. 2000. Investigation of the active sites of CO2 hydrogenation to methanol over a Cu-based catalyst by the UBI-QEP approach. Surf. Sci. 465:1–251–58
    [Google Scholar]
  12. 12.  Savara A, Chan-Thaw CE, Sutton JE, Wang D, Prati L, Villa A 2017. Molecular origin of the selectivity differences between palladium and gold-palladium in benzyl alcohol oxidation: different oxygen adsorption properties. ChemCatChem 9:2253–57
    [Google Scholar]
  13. 13.  Rubert-Nason P, Mavrikakis M, Maravelias CT, Grabow LC, Biegler LT 2014. Advanced solution methods for microkinetic models of catalytic reactions: a methanol synthesis case study. AIChE J 60:41336–46
    [Google Scholar]
  14. 14.  Mhadeshwar AB, Vlachos DG 2004. Microkinetic modeling for water-promoted CO oxidation, water-gas shift, and preferential oxidation of CO on Pt. J. Phys. Chem. B 108:3915246–58
    [Google Scholar]
  15. 15.  Madon RJ, Braden D, Kandoi S, Nagel P, Mavrikakis M, Dumesic JA 2011. Microkinetic analysis and mechanism of the water gas shift reaction over copper catalysts. J. Catal. 281:11–11
    [Google Scholar]
  16. 16.  Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M 2008. Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J. Phys. Chem. C 112:124608–17
    [Google Scholar]
  17. 17.  John M, Alexopoulos K, Reyniers M-F, Marin GB 2017. Mechanistic insights into the formation of butene isomers from 1-butanol in H-ZSM-5: DFT based microkinetic modelling. Catal. Sci. Technol. 7:51055–72
    [Google Scholar]
  18. 18.  Grabow LC, Mavrikakis M 2011. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1:4365–84
    [Google Scholar]
  19. 19.  Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Trevino AA 1993. The Microkinetics of Heterogeneous Catalysis Washington, DC: Am. Chem. Soc.
  20. 20.  Hibbitts D, Dybeck E, Lawlor T, Neurock M, Iglesia E 2016. Preferential activation of CO near hydrocarbon chains during Fischer-Tropsch synthesis on Ru. J. Catal. 337:91–101
    [Google Scholar]
  21. 21.  Bai Y, Mavrikakis M 2018. Mechanistic study of nitric oxide reduction by hydrogen on Pt(100) (I): a DFT analysis of the reaction network. J. Phys. Chem. B 122:432–43
    [Google Scholar]
  22. 22.  Scaranto J, Mavrikakis M 2016. Density functional theory studies of HCOOH decomposition on Pd(111). Surf. Sci. 650:111–20
    [Google Scholar]
  23. 23.  Plauck A, Stangland EE, Dumesic JA, Mavrikakis M 2016. Active sites and mechanisms for H2O2 decomposition over Pd catalysts. PNAS 113:14E1973–82
    [Google Scholar]
  24. 24.  Aghalayam P, Park YK, Vlachos DG 2000. Construction and optimization of complex surface-reaction mechanisms. AIChE J 46:102017–29
    [Google Scholar]
  25. 25.  Ulissi ZW, Medford AJ, Bligaard T, Nørskov JK 2017. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8:14621
    [Google Scholar]
  26. 26.  Goldsmith CF, West RH 2017. Automatic generation of microkinetic mechanisms for heterogeneous catalysis. J. Phys. Chem. C 121:189970–81
    [Google Scholar]
  27. 27.  Andreasen A, Lynggaard H, Stegelmann C, Stoltze P 2003. A microkinetic model of the methanol oxidation over silver. Surf. Sci. 544:15–23
    [Google Scholar]
  28. 28.  Dahl S, Sehested J, Jacobsen C, Tornqvist E, Chorkendorff I 2000. Surface science based microkinetic analysis of ammonia synthesis over ruthenium catalysts. J. Catal. 192:2391–99
    [Google Scholar]
  29. 29.  Schüle A, Shekhah O, Ranke W, Schlögl R, Kolios G 2005. Microkinetic modelling of the dehydrogenation of ethylbenzene to styrene over unpromoted iron oxides. J. Catal. 231:1172–80
    [Google Scholar]
  30. 30.  Medford AJ, Sehested J, Rossmeisl J, Chorkendorff I, Studt F et al. 2014. Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0 0 0 1). J. Catal. 309:397–407
    [Google Scholar]
  31. 31.  Arnarson L, Falsig H, Rasmussen SB, Lauritsen JV, Moses PG 2017. A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VOx/TiO2(001) catalysts. J. Catal. 346:188–97
    [Google Scholar]
  32. 32.  Mamun O, Walker E, Faheem M, Bond JQ, Heyden A 2017. Theoretical investigation of the hydrodeoxygenation of levulinic acid to γ-valerolactone over Ru(0001). ACS Catal 7:1215–28
    [Google Scholar]
  33. 33.  Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T 2011. Density functional theory in surface chemistry and catalysis. PNAS 108:3937–43
    [Google Scholar]
  34. 34.  Fishtik I, Datta R 2002. A UBI-QEP microkinetic model for the water-gas shift reaction on Cu(111). Surf. Sci. 512:3229–54
    [Google Scholar]
  35. 35.  Callaghan C, Fishtik I, Datta R, Carpenter M, Chmielewski M, Lugo A 2003. An improved microkinetic model for the water gas shift reaction on copper. Surf. Sci. 541:1–321–30
    [Google Scholar]
  36. 36.  Chen D, Bjørgum E, Lødeng R, Christensen KO, Holmen A 2004. Microkinetic model assisted catalyst design for steam methane reforming. Stud. Surf. Sci. Catal. 147:139–44
    [Google Scholar]
  37. 37.  Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP et al. 2008. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J. Catal. 259:1147–60
    [Google Scholar]
  38. 38.  Falsig H, Bligaard T, Rass-Hansen J, Kustov AL, Christensen CH, Nørskov JK 2007. Trends in catalytic NO decomposition over transition metal surfaces. Top. Catal. 45:1–4117–20
    [Google Scholar]
  39. 39.  Sprowl LH, Campbell CT, Árnadóttir L 2016. Hindered translator and hindered rotor models for adsorbates: partition functions and entropies. J. Phys. Chem. C 120:189719–31
    [Google Scholar]
  40. 40.  Jørgensen M, Grönbeck H 2017. Adsorbate entropies with complete potential energy sampling in microkinetic modeling. J. Phys. Chem. C 121:137199–207
    [Google Scholar]
  41. 41.  Campbell CT, Sellers JRV 2012. The entropies of adsorbed molecules. J. Am. Chem. Soc. 134:4318109–15
    [Google Scholar]
  42. 42.  Mhadeshwar AB, Wang H, Vlachos DG 2003. Thermodynamic consistency in microkinetic development of surface reaction mechanisms. J. Phys. Chem. B 107:4612721–33
    [Google Scholar]
  43. 43.  Hill CG 1977. An Introduction to Chemical Engineering Kinetics & Reactor Design Hoboken, NJ: John Wiley & Sons
  44. 44.  Boudart M 1968. Kinetics of Chemical Processes Englewood Cliffs, NJ: Prentice-Hall
  45. 45.  Liu J, Hibbitts D, Iglesia E 2017. Dense CO adlayers as enablers of CO hydrogenation turnovers on Ru surfaces. J. Am. Chem. Soc. 139:3411789–802
    [Google Scholar]
  46. 46.  Gokhale AA, Dumesic JA, Mavrikakis M 2008. On the mechanism of low-temperature water gas shift reaction on copper. J. Am. Chem. Soc. 130:41402–14
    [Google Scholar]
  47. 47.  Ammal SC, Heyden A 2017. Water-gas shift activity of atomically dispersed cationic platinum versus metallic platinum clusters on titania supports. ACS Catal 7:1301–9
    [Google Scholar]
  48. 48.  Williams WD, Greeley JP, Delgass WN, Ribeiro FH 2017. Water activation and carbon monoxide coverage effects on maximum rates for low temperature water-gas shift catalysis. J. Catal. 347:197–204
    [Google Scholar]
  49. 49.  Carrasquillo-Flores R, Gallo JMR, Hahn K, Dumesic JA, Mavrikakis M 2013. Density functional theory and reaction kinetics studies of the water-gas shift reaction on Pt-Re catalysts. ChemCatChem 5:123690–99
    [Google Scholar]
  50. 50.  Aranifard S, Ammal SC, Heyden A 2014. On the importance of metal-oxide interface sites for the water-gas shift reaction over Pt/CeO2 catalysts. J. Catal. 309:314–24
    [Google Scholar]
  51. 51.  Aranifard S, Ammal SC, Heyden A 2014. On the importance of the associative carboxyl mechanism for the water-gas shift reaction at Pt/CeO2 interface sites. J. Phys. Chem. C 118:126314–23
    [Google Scholar]
  52. 52.  Aljama H, Yoo JS, Nørskov JK, Abild-Pedersen F, Studt F 2016. Methanol partial oxidation on Ag(111) from first principles. ChemCatChem 8:233621–25
    [Google Scholar]
  53. 53.  Choksi T, Greeley J 2016. Partial oxidation of methanol on MoO3 (010): a DFT and microkinetic study. ACS Catal 6:117260–77
    [Google Scholar]
  54. 54.  Savara A, Rossetti I, Chan-Thaw CE, Prati L, Villa A 2016. Microkinetic modeling of benzyl alcohol oxidation on carbon-supported palladium nanoparticles. ChemCatChem 8:152482–91
    [Google Scholar]
  55. 55.  Gerceker D, Motagamwala AH, Rivera-Dones KR, Miller JB, Huber GW et al. 2017. Methane conversion to ethylene and aromatics on PtSn catalysts. ACS Catal 7:32088–100
    [Google Scholar]
  56. 56.  Baek B, Aboiralor A, Wang S, Kharidehal P, Grabow LC, Massa JD 2017. Strategy to improve catalytic trend predictions for methane oxidation and reforming. AIChE J 63:166–77
    [Google Scholar]
  57. 57.  Li Y, Sun Q 2016. Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6:171–19
    [Google Scholar]
  58. 58.  Xie MS, Xia BY, Li Y, Yan Y, Yang Y et al. 2016. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9:51687–95
    [Google Scholar]
  59. 59.  Kim C, Jeon HS, Eom T, Jee MS, Kim H et al. 2015. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137:4313844–50
    [Google Scholar]
  60. 60.  Hansen HA, Varley JB, Peterson AA, Nørskov JK 2013. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4:3388–92
    [Google Scholar]
  61. 61.  Hong X, Chan K, Tsai C, Nørskov JK 2016. How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal 6:74428–37
    [Google Scholar]
  62. 62.  Chan K, Tsai C, Hansen HA, Nørskov JK 2014. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6:71899–905
    [Google Scholar]
  63. 63.  Shustorovich E 1998. The UBI-QEP method: a practical theoretical approach to understanding chemistry on transition metal surfaces. Surf. Sci. Rep. 31:1–31–119
    [Google Scholar]
  64. 64.  Sellers H 2003. The generalized UBI-QEP method for modeling the energetics of reactions on transition metal surfaces. Surf. Sci. 524:1–329–39
    [Google Scholar]
  65. 65.  Sellers H, Shustorovich E 2002. Intrinsic activation barriers and coadsorption effects for reactions on metal surfaces: unified formalism within the UBI-QEP approach. Surf. Sci. 504:167–82
    [Google Scholar]
  66. 66.  Maestri M 2012. Microkinetic analysis of complex chemical processes at surfaces. New Strategies in Chemical Synthesis and Catalysis B Pignataro 219–45 Weinheim, Ger.: Wiley-VCH Verlag GmbH & Co. KGaA
    [Google Scholar]
  67. 67.  Moqadam M, Rahmani M, Karimi Z, Naderifar A 2012. A UBI-QEP microkinetic study for Fischer-Tropsch synthesis on iron catalysts. Procedia Eng 42:34–44
    [Google Scholar]
  68. 68.  Sutton JE, Vlachos DG 2015. Building large microkinetic models with first-principles’ accuracy at reduced computational cost. Chem. Eng. Sci. 121:190–99
    [Google Scholar]
  69. 69.  Alexiadis VI, Thybaut JW, Kechagiopoulos PN, Chaar M, Van Veen AC et al. 2014. Oxidative coupling of methane: catalytic behaviour assessment via comprehensive microkinetic modelling. Appl. Catal. B Environ. 150–51:496–505
    [Google Scholar]
  70. 70.  Frank B, Jentoft FC, Soerijanto H, Kröhnert J, Schlögl R, Schomäcker R 2007. Steam reforming of methanol over copper-containing catalysts: influence of support material on microkinetics. J. Catal. 246:1177–92
    [Google Scholar]
  71. 71.  Thybaut JW, Sun J, Olivier L, Van Veen AC Mirodatos C, Marin GB 2011. Catalyst design based on microkinetic models: oxidative coupling of methane. Catal. Today 159:129–36
    [Google Scholar]
  72. 72.  Christensen R, Hansen HA, Vegge T 2015. Identifying systematic DFT errors in catalytic reactions. Catal. Sci. Technol. 5:114946–49
    [Google Scholar]
  73. 73.  Farberow CA, Dumesic JA, Mavrikakis M 2014. Density functional theory calculations and analysis of reaction pathways for reduction of nitric oxide by hydrogen on Pt(111). ACS Catal 4:103307–19
    [Google Scholar]
  74. 74.  Campbell CT 2001. Finding the rate-determining step in a mechanism. J. Catal. 204:2520–24
    [Google Scholar]
  75. 75.  Campbell CT 1994. Future directions and industrial perspectives micro- and macro-kinetics: their relationship in heterogeneous catalysis. Top. Catal. 1:3–4353–66
    [Google Scholar]
  76. 76.  Campbell CT 2017. The degree of rate control: a powerful tool for catalysis research. ACS Catal 7:42770–79
    [Google Scholar]
  77. 77.  Cortright RD, Dumesic JA 2001. Kinetics of heterogeneous catalytic reactions: analysis of reaction schemes. Adv. Catal. 46:161–264
    [Google Scholar]
  78. 78.  Wolcott CA, Medford AJ, Studt F, Campbell CT 2015. Degree of rate control approach to computational catalyst screening. J. Catal. 330:197–207
    [Google Scholar]
  79. 79.  Stegelmann C, Andreasen A, Campbell CT 2009. Degree of rate control: how much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131:238077–82
    [Google Scholar]
  80. 80.  Freund H-J, van Santen RA, Neurock M, Boudart M, Mullins CB et al. 1997. Elementary steps and mechanisms. Handbook of Heterogeneous Catalysis G Ertl, H Knözinger, J Weitkamp 911–1188 Weinheim, Ger.: Wiley-VCH Verlag GmbH
    [Google Scholar]
  81. 81.  Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F et al. 2015. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328:36–42
    [Google Scholar]
  82. 82.  Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J 2004. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224:1206–17
    [Google Scholar]
  83. 83.  Evans MG, Polanyi M 1938. Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34:11
    [Google Scholar]
  84. 84.  Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB et al. 2002. Universality in heterogeneous catalysis. J. Catal. 209:2275–78
    [Google Scholar]
  85. 85.  Brogaard RY, Wang CM, Studt F 2014. Methanol-alkene reactions in zeotype acid catalysts: insights from a descriptor-based approach and microkinetic modeling. ACS Catal 4:124504–9
    [Google Scholar]
  86. 86.  Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR et al. 2007. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99:14–7
    [Google Scholar]
  87. 87.  Nørskov JK, Bligaard T, Hvolbæk B, Abild-Pedersen F, Chorkendorff I, Christensen CH 2008. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37:102163–71
    [Google Scholar]
  88. 88.  Greeley J 2016. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7:1605–35
    [Google Scholar]
  89. 89.  Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA et al. 2009. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations. J. Am. Chem. Soc. 131:165809–15
    [Google Scholar]
  90. 90.  Sutton JE, Guo W, Katsoulakis MA, Vlachos DG 2016. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nat. Chem. 8:4331–37
    [Google Scholar]
  91. 91.  Avanesian T, Christopher P 2016. Scaled degree of rate control: identifying elementary steps that control differences in performance of transition-metal catalysts. ACS Catal 6:85268–72
    [Google Scholar]
  92. 92.  Motagamwala AH, Dumesic JA 2016. Analysis of reaction schemes using maximum rates of constituent steps. PNAS 113:21E2879–88
    [Google Scholar]
  93. 93.  Ovesen CV, Clausen BS, Hammershoi BS, Steffensen G, Askgaard T et al. 1996. Microkinetic analysis of the water-gas shift reaction under industrial conditions. J. Catal. 158:1170–80
    [Google Scholar]
  94. 94.  Ovesen CV, Stoltze P, Nørskov JK, Campbell CT 1992. A kinetic model of the water gas shift reaction. J. Catal. 134:2445–68
    [Google Scholar]
  95. 95.  Askgaard TS, Norskov JK, Ovesen CV, Stoltze P 1995. A kinetic model of methanol synthesis. J. Catal. 156:2229–42
    [Google Scholar]
  96. 96.  Mhadeshwar AB, Vlachos DG 2005. Hierarchical multiscale mechanism development for methane partial oxidation and reforming and for thermal decomposition of oxygenates on Rh. J. Phys. Chem. B 109:3516819–35
    [Google Scholar]
  97. 97.  Stoltze P 1995. Structure and surface chemistry of industrial ammonia synthesis catalysts. Ammonia A Nielsen 17–102 Berlin, Ger.: Springer Verlag
    [Google Scholar]
  98. 98.  Aparicio LM, Dumesic JA 1994. Ammonia synthesis kinetics: surface chemistry, rate expressions, and kinetic analysis. Top. Catal. 1:3–4233–52
    [Google Scholar]
  99. 99.  Sehested J, Jacobsen CJH, Törnqvist E, Rokni S, Stoltze P 1999. Ammonia synthesis over a multipromoted iron catalyst: extended set of activity measurements, microkinetic model, and hydrogen inhibition. J. Catal. 188:183–89
    [Google Scholar]
  100. 100.  Spencer N, Schoonmaker RC, Somorjai GA 1982. Iron single crystals as ammonia synthesis catalysts: effect of surface structure on catalyst activity. J. Catal. 74:1129–35
    [Google Scholar]
  101. 101.  Stoltze P, Nørskov J 1988. An interpretation of the high-pressure kinetics of ammonia synthesis based on a microscopic model. J. Catal. 110:11–10
    [Google Scholar]
  102. 102.  Nielsen A, Kjaer J, Hansen B 1964. Rate equation and mechanism of ammonia synthesis at industrial conditions. J. Catal. 3:168–79
    [Google Scholar]
  103. 103.  Logadottir A, Rod T, Nørskov J, Hammer B, Dahl S, Jacobsen CJ 2001. The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 197:2229–31
    [Google Scholar]
  104. 104.  Dahl S, Logadottir A, Jacobsen CJH, Nørskov JK 2001. Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis. Appl. Catal. A Gen. 222:1–219–29
    [Google Scholar]
  105. 105.  Medford AJ, Wellendorff J, Vojvodic A, Studt F, Abild-Pedersen F et al. 2014. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345:6193197–200
    [Google Scholar]
  106. 106.  Jacobsen CJH, Dahl S, Clausen BGS, Bahn S, Logadottir A, Nørskov JK 2001. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123:348404–5
    [Google Scholar]
  107. 107.  Boisen A, Dahl S, Jacobsen CJH 2002. Promotion of binary nitride catalysts: isothermal N2 adsorption, microkinetic model, and catalytic ammonia synthesis activity. J. Catal. 208:1180–86
    [Google Scholar]
  108. 108.  Vojvodic A, Nørskov JK 2015. New design paradigm for heterogeneous catalysts. Natl. Sci. Rev. 2:2140–49
    [Google Scholar]
  109. 109.  Andersen M, Medford AJ, Nørskov JK, Reuter K 2017. Scaling-relation-based analysis of bifunctional catalysis: the case for homogeneous bimetallic alloys. ACS Catal 7:63960–67
    [Google Scholar]
  110. 110.  Strongin D, Somorjai GA 1988. The effects of potassium on ammonia synthesis over iron single-crystal surfaces. J. Catal. 109:151–60
    [Google Scholar]
  111. 111.  Aika K, Hori H, Ozaki A 1972. Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal. J. Catal. 27:3424–31
    [Google Scholar]
  112. 112.  Wang P, Chang F, Gao W, Guo J, Wu G et al. 2016. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9:164–70
    [Google Scholar]
  113. 113.  Calle-Vallejo F, Loffreda D, Koper MTM, Sautet P 2015. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7:5403–10
    [Google Scholar]
  114. 114.  Choi S-I, Herron JA, Scaranto J, Huang H, Wang Y et al. 2015. A comprehensive study of formic acid oxidation on palladium nanocrystals with different types of facets and twin defects. ChemCatChem 7:142077–84
    [Google Scholar]
  115. 115.  Sener C, Wesley TS, Alba-Rubio AC, Kumbhalkar MD, Hakim SH et al. 2016. PtMo bimetallic catalysts synthesized by controlled surface reactions for water gas shift. ACS Catal 6:21334–44
    [Google Scholar]
  116. 116.  Li Y, Su H, Chan SH, Sun Q 2015. CO2 electroreduction performance of transition metal dimers supported on graphene: a theoretical study. ACS Catal 5:116658–64
    [Google Scholar]
  117. 117.  Ro I, Liu Y, Ball MR, Jackson DHK, Chada JP et al. 2016. Role of the Cu-ZrO2 interfacial sites for conversion of ethanol to ethyl acetate and synthesis of methanol from CO2 and H2. ACS Catal 6:107040–50
    [Google Scholar]
  118. 118.  Carrasquillo-Flores R, Ro I, Kumbhalkar MD, Burt S, Carrero CA et al. 2015. Reverse water-gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J. Am. Chem. Soc. 137:3210317–25
    [Google Scholar]
  119. 119.  Mehta P, Greeley J, Delgass WN, Schneider WF 2017. Adsorption energy correlations at the metal-support boundary. ACS Catal 7:74707–15
    [Google Scholar]
  120. 120.  Vojvodic A, Medford AJ, Studt F, Abild-Pedersen F, Khan TS et al. 2014. Exploring the limits: a low-pressure, low-temperature Haber-Bosch process. Chem. Phys. Lett. 598:108–12
    [Google Scholar]
  121. 121.  Calle-Vallejo F, Krabbe A, García-Lastra JM 2017. How covalence breaks adsorption-energy scaling relations and solvation restores them. Chem. Sci. 8:1124–30
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084103
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084103
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error