Skip to main content

Advertisement

Log in

Seed coats as an alternative molecular factory: thinking outside the box

  • Review
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Key message

Seed coats as commodities.

Abstract

Seed coats play important roles in the protection of the embryo from biological attack and physical damage by the environment as well as dispersion strategies. A significant part of the energy devoted by the mother plant to seed production is channeled into the production of the cell layers and metabolites that surround the embryo. Nevertheless, in crop species these are often discarded post-harvest and are a wasted resource that could be processed to yield co-products. The production of novel compounds from existing metabolites is also a possibility. A number of macromolecules are already accumulated in these maternal layers that could be exploited in industrial applications either directly or via green chemistry, notably flavonoids, lignin, lignan, polysaccharides, lipid polyesters and waxes. Here, we summarize our knowledge of the in planta biosynthesis pathways of these macromolecules and their molecular regulation as well as potential applications. We also outline recent work aimed at providing further tools for increasing yields of existing molecules or the development of novel biotech approaches, as well as trial studies aimed at exploiting this underused resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Aal EM, Hucl P, Rabalski I (2018) Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food Chem 254:13–19

    Article  PubMed  CAS  Google Scholar 

  • Aguirre M, Kiegle E, Leo G, Ezquer I (2018) Carbohydrate reserves and seed development: an overview. Plant Reprod. https://doi.org/10.1007/s00497-018-0336-3

    Article  PubMed  Google Scholar 

  • Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Lee Y, Geldner N, Fernie AR, Martinoia E (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22:1207–1212

    Article  PubMed  CAS  Google Scholar 

  • Appelhagen I, Lu GH, Huep G, Schmelzer E, Weisshaar B, Sagasser M (2011) TRANSPARENT TESTA1 interacts with R2R3-MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds. Plant J 67:406–419

    Article  PubMed  CAS  Google Scholar 

  • Appelhagen I, Thiedig K, Nordholt N, Schmidt N, Huep G, Sagasser M, Weisshaar B (2014) Update on transparent testa mutants from Arabidopsis thaliana: characterisation of new alleles from an isogenic collection. Planta 240:955–970

    Article  PubMed  CAS  Google Scholar 

  • Attoumbre J, Bienaime C, Dubois F, Fliniaux MA, Chabbert B, Baltora-Rosset S (2010) Development of antibodies against secoisolariciresinol–application to the immunolocalization of lignans in Linum usitatissimum seeds. Phytochemistry 71:1979–1987

    Article  PubMed  CAS  Google Scholar 

  • Bakan B, Marion D (2017) Assembly of the cutin polyester: from cells to extracellular cell walls. Plants (Basel) 6:57

    Article  Google Scholar 

  • Baldoni A, Von Pinho EV, Fernandes JS, Abreu VM, Carvalho ML (2013) Gene expression in the lignin biosynthesis pathway during soybean seed development. Genet Mol Res 12:2618–2624

    Article  PubMed  CAS  Google Scholar 

  • Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115:1053–1074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batchelor AK, Boutilier K, Miller SS, Labbé H, Bowman L, Hu M, Johnson DA, Gijzen M, Miki BLA (2000) The seed coat-specific expression of a subtilisin-like gene, SCS1, from soybean. Planta 211:484–492

    Article  PubMed  CAS  Google Scholar 

  • Batchelor AK, Boutilier K, Miller SS, Hattori J, Bowman L, Hu M, Lantin S, Johnson DA, Miki BL (2002) SCB1, a BURP-domain protein gene, from developing soybean seed coats. Planta 215:523–532

    Article  PubMed  CAS  Google Scholar 

  • Baud S (2018) Seeds as oil factories. Plant Reprod. https://doi.org/10.1007/s00497-018-0325-6

    Article  PubMed  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J39:366–380

    Google Scholar 

  • Beeckman T, De Rycke R, Viane R, Inzé D (2000) Histological study of seed coat development in Arabidopsis thaliana. J Plant Res 113:139–148

    Article  Google Scholar 

  • Beisl S, Miltner A, Friedl A (2017) Lignin from micro- to nanosize: production methods. Int J Mol Sci 18:1244

    Article  PubMed Central  Google Scholar 

  • Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19:351–368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beisson F, Li-Beisson Y, Pollard M (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15:329–337

    Article  PubMed  CAS  Google Scholar 

  • Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2010) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205–220

    Article  PubMed  CAS  Google Scholar 

  • Bhargava A, Ahad A, Wang S, Mansfield SD, Haughn GW, Douglas CJ, Ellis BE (2013) The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta 237:1199–1211

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Borghi M, Xie D-Y (2016) Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Planta 243:549–561

    Article  PubMed  CAS  Google Scholar 

  • Capeleti I, Bonini EA, Ferrarese MdLL, Teixeira ACN, Krzyzanowski FC, Ferrarese-Filho O (2005) Lignin content and peroxidase activity in soybean seed coat susceptible and resistant to mechanical damage. Acta Physiol Plant 27:103–108

    Article  CAS  Google Scholar 

  • Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS (2015) Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 27:2545–2559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chateigner-Boutin AL, Ordaz-Ortiz JJ, Alvarado C, Bouchet B, Durand S, Verhertbruggen Y, Barriere Y, Saulnier L (2016) Developing pericarp of maize: a model to study arabinoxylan synthesis and feruloylation. Front Plant Sci 7:1476

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen F, Tobimatsu Y, Havkin-Frenkel D, Dixon RA, Ralph J (2012) A polymer of caffeyl alcohol in plant seeds. Proc Natl Acad Sci USA 109:1772–1777

    Article  PubMed  Google Scholar 

  • Chen F, Tobimatsu Y, Jackson L, Nakashima J, Ralph J, Dixon RA (2013a) Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity. Plant J 73:201–211

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Deng W, Peng F, Truksa M, Singer S, Snyder CL, Mietkiewska E, Weselake RJ (2013b) Brassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level. Plant J 74:663–677

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Xuan L, Wang Z, Zhou L, Li Z, Du X, Ali E, Zhang G, Jiang L (2014) TRANSPARENT TESTA8 inhibits seed fatty acid accumulation by targeting several seed development regulators in arabidopsis. Plant Physiol 165:905–916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, Yu H (2015) Transparent Testa Glabra1 regulates the accumulation of seed storage reserves in arabidopsis. Plant Physiol 169:391–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Y, Zhu W, Chen Y, Ito S, Asami T, Wang X (2014) Brassinosteroids control root epidermal cell fate via direct regulation of a complex by GSK3-like kinases. eLife 3:e02525

    Article  PubMed Central  CAS  Google Scholar 

  • Chikara S, Lindsey K, Dhillon H, Mamidi S, Kittilson J, Christofidou-Solomidou M, Reindl KM (2017) Enterolactone induces G1-phase cell cycle arrest in nonsmall cell lung cancer cells by downregulating cyclins and cyclin-dependent kinases. Nutr Cancer 69:652–662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coen O, Magnani E (2018) Seed coat thickness in the evolution of angiosperms. Cell Mol Life Sci 75:2509. https://doi.org/10.1007/s00018-018-2816-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coen O, Fiume E, Xu W, De Vos D, Lu J, Pechoux C, Lepiniec L, Magnani E (2017) Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds. Development 144:1490–1497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corbin C, Drouet S, Mateljak I, Markulin L, Decourtil C, Renouard S, Lopez T, Doussot J, Lamblin F, Auguin D, Laine E, Fuss E, Hano C (2017) Functional characterization of the pinoresinol-lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta 246:405–420

    Article  PubMed  CAS  Google Scholar 

  • Creff A, Brocard L, Ingram G (2015) A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat. Nat Commun 6:6382

    Article  PubMed  CAS  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151:1513–1530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article  PubMed  CAS  Google Scholar 

  • Dean GH, Jin Z, Shi L, Esfandiari E, McGee R, Nabata K, Lee T, Kunst L, Western TL, Haughn GW (2017) Identification of a seed coat-specific promoter fragment from the Arabidopsis MUCILAGE-MODIFIED4 gene. Plant Mol Biol 95:33–50

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  PubMed  CAS  Google Scholar 

  • El-Mezawy A, Wu L, Shah S (2009) A seed coat-specific promoter for canola. Biotech Lett 31:1961–1965

    Article  CAS  Google Scholar 

  • Esfandiari E, Jin Z, Abdeen A, Griffiths JS, Western TL, Haughn GW (2013) Identification and analysis of an outer-seed-coat-specific promoter from Arabidopsis thaliana. Plant Mol Biol 81:93–104

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Ramsay A, Renouard S, Hano C, Lamblin F, Chabbert B, Mesnard F, Schneider B (2016) Laser microdissection and spatiotemporal pinoresinol-lariciresinol reductase gene expression assign the cell layer-specific accumulation of secoisolariciresinol diglucoside in flaxseed coats. Front Plant Sci 7:1743

    PubMed  PubMed Central  Google Scholar 

  • Fich EA, Segerson NA, Rose JK (2016) The plant polyester cutin: biosynthesis, structure, and biological roles. Annu Rev Plant Biol 67:207–233

    Article  PubMed  CAS  Google Scholar 

  • Ford JD, Huang KS, Wang HB, Davin LB, Lewis NG (2001) Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed. J Nat Prod 64:1388–1397

    Article  PubMed  CAS  Google Scholar 

  • Francoz E, Ranocha P, Burlat V, Dunand C (2015a) Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends Plant Sci 20:515–524

    Article  PubMed  CAS  Google Scholar 

  • Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C (2015b) Roles of cell wall peroxidases in plant development. Phytochemistry 112:15–21

    Article  PubMed  CAS  Google Scholar 

  • Fresquet-Corrales S, Roque E, Sarrion-Perdigones A, Rochina M, Lopez-Gresa MP, Diaz-Mula HM, Belles JM, Tomas-Barberan F, Beltran JP, Canas LA (2017) Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS ONE 12:e0184839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu F, Zhang W, Li Y-Y, Wang HL (2017) Establishment of the model system between phytochemicals and gene expression profiles in macrosclereid cells of Medicago truncatula. Sci Rep 7:2580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujino N, Tenma N, Waki T, Ito K, Komatsuzaki Y, Sugiyama K, Yamazaki T, Yoshida S, Hatayama M, Yamashita S, Tanaka Y, Motohashi R, Denessiouk K, Takahashi S, Nakayama T (2018) Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species. Plant J 94:372–392

    Article  PubMed  CAS  Google Scholar 

  • Furtado A, Henry RJ, Pellegrineschi A (2009) Analysis of promoters in transgenic barley and wheat. Plant Biotechnol J 7:240–253

    Article  PubMed  CAS  Google Scholar 

  • Galland M, Boutet-Mercey S, Lounifi I, Godin B, Balzergue S, Grandjean O, Morin H, Perreau F, Debeaujon I, Rajjou L (2014) Compartmentation and dynamics of flavone metabolism in dry and germinated rice seeds. Plant Cell Physiol 55:1646–1659

    Article  PubMed  CAS  Google Scholar 

  • Ganesan K, Xu B (2017) A critical review on polyphenols and health benefits of black soybeans. Nutrients 9:455

    Article  PubMed Central  Google Scholar 

  • Ghose K, Selvaraj K, McCallum J, Kirby CW, Sweeney-Nixon M, Cloutier SJ, Deyholos M, Datla R, Fofana B (2014) Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). BMC Plant Biol 14:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Girard AL, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, Vivancos J, Runavot JL, Quemener B, Petit J, Germain V, Rothan C, Marion D, Bakan B (2012) Tomato GDSL1 is required for cutin deposition in the fruit cuticle. Plant Cell 24:3119–3134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez A, Mendenhall J, Huo Y, Lloyd A (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol 325:412–421

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Brown M, Hatlestad G, Akhavan N, Smith T, Hembd A, Moore J, Montes D, Mosley T, Resendez J, Nguyen H, Wilson L, Campbell A, Sudarshan D, Lloyd A (2016) TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Dev Biol 419:54–63

    Article  PubMed  CAS  Google Scholar 

  • Gou JY, Yu XH, Liu CJ (2009) A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. Proc Natl Acad Sci USA 106:18855–18860

    Article  PubMed  Google Scholar 

  • Gou M, Hou G, Yang H, Zhang X, Cai Y, Kai G, Liu CJ (2017) The MYB107 transcription factor positively regulates suberin biosynthesis. Plant Physiol 173:1045–1058

    Article  PubMed  CAS  Google Scholar 

  • Graça J (2015) Suberin: the biopolyester at the frontier of plants. Front Chem 3:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths JS, North HM (2017) Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions. New Phytol 214:959–966

    Article  PubMed  CAS  Google Scholar 

  • Griffiths JS, Sola K, Kushwaha R, Lam P, Tateno M, Young R, Voiniciuc C, Dean G, Mansfield SD, DeBolt S, Haughn GW (2015) Unidirectional movement of cellulose synthase complexes in Arabidopsis seed coat epidermal cells deposit cellulose involved in mucilage extrusion, adherence, and ray formation. Plant Physiol 168:502–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    PubMed  CAS  Google Scholar 

  • Guan X, Lee JJ, Pang M, Shi X, Stelly DM, Chen ZJ (2011) Activation of Arabidopsis seed hair development by cotton fiber-related genes. PLoS ONE 6:e21301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harmatha J, Dinan L (2003) Biological activities of lignans and stilbenoids associated with plant-insect chemical interactions. Phytochem Rev 2:321–330

    Article  CAS  Google Scholar 

  • Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477

    Article  PubMed  CAS  Google Scholar 

  • Hemmati S, von Heimendahl CB, Klaes M, Alfermann AW, Schmidt TJ, Fuss E (2010) Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Med 76:928–934

    Article  PubMed  CAS  Google Scholar 

  • Hichri I, Heppel SC, Pillet J, Leon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J (2010) The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant 3:509–523

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Mei QY, Ma L, Cui WG, Zhou WH, Zhou DS, Zhao Q, Xu DY, Zhao X, Lu Q, Hu ZY (2015) Secoisolariciresinol diglycoside, a flaxseed lignan, exerts analgesic effects in a mouse model of type 1 diabetes: engagement of antioxidant mechanism. Eur J Pharmacol 767:183–192

    Article  PubMed  CAS  Google Scholar 

  • Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, Takagi J, Tamura K, Sasaki R, Aoki K, Shimada T, Hara-Nishimura I (2014) GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. Plant J 80:410–423

    Article  PubMed  CAS  Google Scholar 

  • Ingram G, Nawrath C (2017) The roles of the cuticle in plant development: organ adhesions and beyond. J Exp Bot 68:5307–5321

    Article  PubMed  CAS  Google Scholar 

  • Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670–683

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Deyholos MK (2010) Transcriptome analysis of secondary-wall-enriched seed coat tissues of canola (Brassica napus L.). Plant Cell Rep 29:327–342

    Article  PubMed  CAS  Google Scholar 

  • Kalami S, Arefmanesh M, Master E, Nejad M (2017) Replacing 100% of phenol in phenolic adhesive formulations with lignin. J Appl Polym Sci 134:45124

    Article  CAS  Google Scholar 

  • Karmann J, Müller B, Hammes UZ (2018) The long and winding road—transport pathways for amino acids in Arabidopsis seeds. Plant Reprod. https://doi.org/10.1007/s00497-018-0334-5

    Article  PubMed  Google Scholar 

  • Kneissl ML, Deikman J (1996) The tomato E8 gene influences ethylene biosynthesis in fruit but not in flowers. Plant Physiol 112:537–547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunieda T, Shimada T, Kondo M, Nishimura M, Nishitani K, Hara-Nishimura I (2013) Spatiotemporal secretion of PEROXIDASE36 is required for seed coat mucilage extrusion in Arabidopsis. Plant Cell 25:1355–1367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727

    Article  PubMed  CAS  Google Scholar 

  • Lashbrooke JG, Cohen H, Levy-Samocha D, Tzfadia O, Panizel I, Zeisler V, Massalha H, Stern A, Trainotti L, Schreiber L, Costa F, Aharoni A (2016) MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. Plant Cell 28:2097–2116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  PubMed  CAS  Google Scholar 

  • Li SF, Milliken ON, Pham H, Seyit R, Napoli R, Preston J, Koltunow AM, Parish RW (2009) The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell 21:72–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Zhang B, Chen B, Ji L, Yu H (2018a) Site-specific phosphorylation of TRANSPARENT TESTA GLABRA1 mediates carbon partitioning in Arabidopsis seeds. Nat Commun 9:571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li N, Xu R, Duan P, Li Y (2018) Control of grain size in rice. Plant Reprod. https://doi.org/10.1007/s00497-018-0333-6

    Article  PubMed  Google Scholar 

  • Lian J, Lu X, Yin N, Ma L, Lu J, Liu X, Li J, Lu J, Lei B, Wang R, Chai Y (2017) Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Plant Sci 254:32–47

    Article  PubMed  CAS  Google Scholar 

  • Liang M, Davis E, Gardner D, Cai X, Wu Y (2006) Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta 224:1185–1196

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Jun JH, Dixon RA (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165:1424–1439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Magnani E (2018) Seed tissue and nutrient partitioning, a case for the nucellus. Plant Reprod. https://doi.org/10.1007/s00497-018-0338-1

    Article  PubMed  PubMed Central  Google Scholar 

  • MacGregor DR, Kendall SL, Florance H, Fedi F, Moore K, Paszkiewicz K, Smirnoff N, Penfield S (2015) Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytol 205:642–652

    Article  PubMed  CAS  Google Scholar 

  • Marles MS, Gruber MY (2004) Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric 84:251–262

    Article  CAS  Google Scholar 

  • Matsuda F, Hirai MY, Sasaki E, Akiyama K, Yonekura-Sakakibara K, Provart NJ, Sakurai T, Shimada Y, Saito K (2010) AtMetExpress development: a phytochemical atlas of Arabidopsis development. Plant Physiol 152:566–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matzke K, Riederer M (1990) The composition of the cutin of the caryopses and leaves of Triticum aestivum L. Planta 182:461

    Article  PubMed  CAS  Google Scholar 

  • Mendu V, Griffiths JS, Persson S, Stork J, Downie AB, Voiniciuc C, Haughn GW, DeBolt S (2011) Subfunctionalization of cellulose synthases in seed coat epidermal cells mediates secondary radial wall synthesis and mucilage attachment. Plant Physiol 157:441–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizzotti C, Ezquer I, Paolo D, Rueda-Romero P, Guerra RF, Battaglia R, Rogachev I, Aharoni A, Kater MM, Caporali E, Colombo L (2014) SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat. PLoS Genet 10:e1004856

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina I, Ohlrogge JB, Pollard M (2008) Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Plant J 53:437–449

    Article  PubMed  CAS  Google Scholar 

  • Molina I, Li-Beisson Y, Beisson F, Ohlrogge JB, Pollard M (2009) Identification of an Arabidopsis feruloyl-coenzyme A transferase required for suberin synthesis. Plant Physiol 151:1317–1328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I (2005) A vacuolar processing enzyme, deltaVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nesi N, Lucas MO, Auger B, Baron C, Lecureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M (2009) The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep 28:601–617

    Article  PubMed  CAS  Google Scholar 

  • North HM, Berger A, Saez-Aguayo S, Ralet MC (2014) Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants. Ann Bot 114:1251–1263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh JH, Lee YJ, Byeon EJ, Kang BC, Kyeoung DS, Kim CK (2018) Whole-genome resequencing and transcriptomic analysis of genes regulating anthocyanin biosynthesis in black rice plants. 3 Biotech 8:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer R, Cornuault V, Marcus SE, Knox JP, Shewry PR, Tosi P (2015) Comparative in situ analyses of cell wall matrix polysaccharide dynamics in developing rice and wheat grain. Planta 241:669–685

    Article  PubMed  CAS  Google Scholar 

  • Pattison RJ, Csukasi F, Zheng Y, Fei Z, van der Knaap E, Catala C (2015) Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato rruit development. Plant Physiol 168:1684–1701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paynel F, Pavlov A, Ancelin G, Rihouey C, Picton L, Lebrun L, Morvan C (2013) Polysaccharide hydrolases are released with mucilages after water hydration of flax seeds. Plant Physiol Biochem 62:54–62

    Article  PubMed  CAS  Google Scholar 

  • Perez L, MOL C, BAKUS RC, Rogers J, Rodriguez G (2017) Plant extract compositions for forming protective coatings. Patent WO2017100636A1

  • Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    Article  PubMed  CAS  Google Scholar 

  • Qi S, Liu K, Gao C, Li D, Jin C, Duan S, Ma H, Hai J, Chen M (2017) The effect of BnTT8 on accumulation of seed storage reserves and tolerance to abiotic stresses during Arabidopsis seedling establishment. Plant Growth Reg 82:271–280

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Article  PubMed  CAS  Google Scholar 

  • Ralet MC, Crepeau MJ, Vigouroux J, Tran J, Berger A, Salle C, Granier F, Botran L, North HM (2016) Xylans provide the structural driving force for mucilage adhesion to the Arabidopsis seed coat. Plant Physiol 171:165–178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramsay A, Fliniaux O, Quero A, Molinie R, Demailly H, Hano C, Paetz C, Roscher A, Grand E, Kovensky J, Schneider B, Mesnard F (2017) Kinetics of the incorporation of the main phenolic compounds into the lignan macromolecule during flaxseed development. Food Chem 217:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, Francoz E, Burlat V, Dunand C (2014) Expression of PRX36, PMEI6 and SBT1.7 is controlled by complex transcription factor regulatory networks for proper seed coat mucilage extrusion. Plant Signal Behav 9:e977734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raviv B, Aghajanyan L, Granot G, Makover V, Frenkel O, Gutterman Y, Grafi G (2017) The dead seed coat functions as a long-term storage for active hydrolytic enzymes. PLoS ONE 12:e0181102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renouard S, Tribalatc MA, Lamblin F, Mongelard G, Fliniaux O, Corbin C, Marosevic D, Pilard S, Demailly H, Gutierrez L, Hano C, Mesnard F, Laine E (2014) RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J Plant Physiol 171:1372–1377

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    PubMed  CAS  Google Scholar 

  • Romano JM, Dubos C, Prouse MB, Wilkins O, Hong H, Poole M, Kang KY, Li E, Douglas CJ, Western TL, Mansfield SD, Campbell MM (2012) AtMYB61, an R2R3-MYB transcription factor, functions as a pleiotropic regulator via a small gene network. New Phytol 195:774–786

    Article  PubMed  CAS  Google Scholar 

  • Routaboul J, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  PubMed  CAS  Google Scholar 

  • Saez-Aguayo S, Ralet MC, Berger A, Botran L, Ropartz D, Marion-Poll A, North HM (2013) Pectin Methylesterase Inhibitor6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells. Plant Cell 25:308–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagasser M, Lu GH, Hahlbrock K, Weisshaar B (2002) A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev 16:138–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21–34

    Article  PubMed  CAS  Google Scholar 

  • Sano N, Rajjou L, North HM, Debeaujon I, Marion-Poll A, Seo M (2016) Staying Alive: molecular aspects of seed longevity. Plant Cell Physiol 57:660–674

    Article  PubMed  CAS  Google Scholar 

  • Schmidt TJ, Hemmati S, Klaes M, Konuklugil B, Mohagheghzadeh A, Ionkova I, Fuss E, Wilhelm Alfermann A (2010) Lignans in flowering aerial parts of Linum species – chemodiversity in the light of systematics and phylogeny. Phytochemistry 71:1714–1728

    Article  PubMed  CAS  Google Scholar 

  • Sharif MK, Butt MS, Anjum FM, Khan SH (2014) Rice bran: a novel functional ingredient. Crit Rev Food Sci Nutri. 54:807–816

    Article  CAS  Google Scholar 

  • Shi L, Katavic V, Yu Y, Kunst L, Haughn G (2012) Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J 69:37–46

    Article  PubMed  CAS  Google Scholar 

  • Shoeva OY, Mock HP, Kukoeva TV, Borner A, Khlestkina EK (2016) Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare. PLoS ONE 11:e0163782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simon MK, Williams LA, Brady-Passerini K, Brown RH, Gasser CS (2012) Positive- and negative-acting regulatory elements contribute to the tissue-specific expression of INNER NO OUTER, a YABBY-type transcription factor gene in Arabidopsis. BMC Plant Biol 12:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N (2017a) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Singh JP, Shevkani K, Singh N, Kaur A (2017b) Bioactive constituents in pulses and their health benefits. J Food Sci Tech Mysore 54:858–870

    Article  CAS  Google Scholar 

  • Skinner DJ, Brown RH, Kuzoff RK, Gasser CS (2016) Conservation of the role of INNER NO OUTER in development of unitegmic ovules of the Solanaceae despite a divergence in protein function. BMC Plant Biol 16:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smuda SS, Mohsen SM, Olsen K, Aly MH (2018) Bioactive compounds and antioxdant activities of some cereal milling by-products. J Food Sci Technol 55:1134–1142

    Article  PubMed  CAS  Google Scholar 

  • Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD (2014) The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci 5:351

    PubMed  PubMed Central  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JN, Koes R (2000) anthocyanin1 of petunia encodes a basic helix–loop–helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stork J, Harris D, Griffiths J, Williams B, Beisson F, Li-Beisson Y, Mendu V, Haughn G, Debolt S (2010) Cellulose Synthase9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells. Plant Physiol 153:580–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B (2010) Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol 188:985–1000

    Article  PubMed  CAS  Google Scholar 

  • Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062–4067

    Article  PubMed  Google Scholar 

  • Tiwari S, Spielman M, Day RC, Scott RJ (2006) Proliferative phase endosperm promoters from Arabidopsis thaliana. Plant Biotech J 4:393–407

    Article  CAS  Google Scholar 

  • Tobimatsu Y, Chen F, Nakashima J, Escamilla-Trevino LL, Jackson L, Dixon RA, Ralph J (2013) Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell 25:2587–2600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tohge T, Fernie AR (2017) An overview of compounds derived from the shikimate and phenylpropanoid pathways and their medicinal importance. Mini Rev Med Chem 17:1013–1027

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, de Souza LP, Fernie AR (2017) Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot 68:4013–4028

    Article  PubMed  CAS  Google Scholar 

  • Tsai AY, Kunieda T, Rogalski J, Foster LJ, Ellis BE, Haughn GW (2017) Identification and characterization of Arabidopsis seed coat mucilage proteins. Plant Physiol 173:1059–1074

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    Article  CAS  Google Scholar 

  • Vasilevski A, Giorgi FM, Bertinetti L, Usadel B (2012) LASSO modeling of the Arabidopsis thaliana seed/seedling transcriptome: a model case for detection of novel mucilage and pectin metabolism genes. Mol BioSyst 8:2566–2574

    Article  PubMed  CAS  Google Scholar 

  • Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M, Bekkaoui F, Sharpe A, Wang E, Rowland G, Selvaraj G, Datla R (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verdier J, Dessaint F, Schneider C, Abirached-Darmency M (2013) A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat. J Exp Bot 64:459–470

    Article  PubMed  CAS  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  PubMed  CAS  Google Scholar 

  • Voiniciuc C, Schmidt MH, Berger A, Yang B, Ebert B, Scheller HV, North HM, Usadel B, Gunl M (2015) Mucilage-Related10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage. Plant Physiol 169:403–420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan L, Xia Q, Qiu X, Selvaraj G (2002) Early stages of seed development in Brassica napus: a seed coat-specific cysteine proteinase associated with programmed cell death of the inner integument. Plant J 30:1–10

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Grusak MA (2005) Structure and development of Medicago truncatula pod wall and seed coat. Ann Bot 95:737–747

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:220

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Chen M, Chen T, Xuan L, Li Z, Du X, Zhou L, Zhang G, Jiang L (2014) TRANSPARENT TESTA2 regulates embryonic fatty acid biosynthesis by targeting FUSCA3 during the early developmental stage of Arabidopsis seeds. Plant J 77:757–769

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X (2017) MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant J 90:276–292

    Article  PubMed  CAS  Google Scholar 

  • Western TL, Skinner DJ, Haughn GW (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122:345–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Windsor JB, Symonds VV, Mendenhall J, Lloyd AM (2000) Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J 22:483–493

    Article  PubMed  CAS  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (1998) Flavonoids in seeds and grains: physiological function, agronomic importance and the genetics of biosynthesis. Seed Sci Res 8:415–422

    Google Scholar 

  • Winkel-Shirley BU (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Druka A, Horvath H, Kleinhofs A, Gamini Kannangara C, von Wettstein D (2000) Functional characterization of seed coat-specific members of the barley germin gene family. Plant Physiol Biochem 38:685–698

    Article  CAS  Google Scholar 

  • Wu L, EL-mezawy A, Duong M, Shah S (2010) Two seed coat-specific promoters are functionally conserved between Arabidopsis thaliana and Brassica napus. In Vitro Cell Dev Biol Plant 46:338–347

    Article  CAS  Google Scholar 

  • Wu L, El-Mezawy A, Shah S (2011) A seed coat outer integument-specific promoter for Brassica napus. Plant Cell Rep 30:75–80

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Liu J, Li D, Liu CM (2016) Rice caryopsis development I: dynamic changes in different cell layers. J Integr Plant Biol 58:772–785

    Article  PubMed  CAS  Google Scholar 

  • Xiong F, Yu XR, Zhou L, Wang F, Xiong AS (2013) Structural and physiological characterization during wheat pericarp development. Plant Cell Rep 32:1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Grain D, Le Gourrierec J, Harscoet E, Berger A, Jauvion V, Scagnelli A, Berger N, Bidzinski P, Kelemen Z, Salsac F, Baudry A, Routaboul JM, Lepiniec L, Dubos C (2013) Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis. New Phytol 198:59–70

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Fiume E, Coen O, Pechoux C, Lepiniec L, Magnani E (2016) Endosperm and nucellus develop antagonistically in Arabidopsis seeds. Plant Cell 28:1343–1360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu W, Bobet S, Le Gourrierec J, Grain D, De Vos D, Berger A, Salsac F, Kelemen Z, Boucherez J, Rolland A, Mouille G, Routaboul JM, Lepiniec L, Dubos C (2017) TRANSPARENT TESTA 16 and 15 act through different mechanisms to control proanthocyanidin accumulation in Arabidopsis testa. J Exp Bot 68:2859–2870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeats TH, Martin LB, Viart HM, Isaacson T, He Y, Zhao L, Matas AJ, Buda GJ, Domozych DS, Clausen MH, Rose JK (2012) The identification of cutin synthase: formation of the plant polyester cutin. Nat Chem Biol 8:609–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeats TH, Huang W, Chatterjee S, Viart HM, Clausen MH, Stark RE, Rose JK (2014) Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. Plant J 77:667–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshimura Y, Zaima N, Moriyama T, Kawamura Y (2012) Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. PLoS ONE 7:e31285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu L, Shi D, Li J, Kong Y, Yu Y, Chai G, Hu R, Wang J, Hahn MG, Zhou G (2014) Cellulose synthase-like A2, a glucomannan synthase, is involved in maintaining adherent mucilage structure in Arabidopsis seed. Plant Physiol 164:1842–1856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang K, Lu K, Qu C, Liang Y, Wang R, Chai Y, Li J (2013) Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PLoS ONE 8:e61247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, Luo J, Kawar PG, Hill L, Santino A, Fernie AR, Martin C (2015) Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun 6:8635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, Sun L, Li S, Wang W, Ding Y, Swarm SA, Li L, Wang X, Tang X, Zhang Z, Tian Z, Brown PJ, Cai C, Nelson RL, Ma J (2018) Elevation of soybean seed oil content through selection for seed coat shininess. Nat Plants 4:30–35

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye Z-H (2015) Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol 56:195–214

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Li Y, Hussain N, Li Z, Wu D, Jiang L (2016) Allelic variation of BnaC.TT2.a and its association with seed coat color and fatty acids in rapeseed (Brassica napus L.). PLoS ONE 11:e0146661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author contribution statement

EF, LL and HMN planned, organized, wrote and reviewed the manuscript. All the authors approved the manuscript.

Acknowledgements

This work was supported in part by the Agence Nationale de la Recherche programme (grant number ANR-15-CE21-0019). The Institut Jean-Pierre Bourgin benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS). We thank the reviewers for their careful reading of this article and their constructive suggestions for its improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen M. North.

Additional information

Communicated by L. Lepiniec, H. North, G. Ingram.

A contribution to the special issue ‘Seed Biology’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francoz, E., Lepiniec, L. & North, H.M. Seed coats as an alternative molecular factory: thinking outside the box. Plant Reprod 31, 327–342 (2018). https://doi.org/10.1007/s00497-018-0345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-018-0345-2

Keywords

Navigation