1932

Abstract

Cell turnover is a fundamental feature in metazoans. Cells can die passively, as a consequence of severe damage to their structural integrity, or actively, owing to a more confined biological disruption such as DNA damage. Passive cell death is uncontrolled and often harmful to the organism. In contrast, active cell death is tightly regulated and serves to support the organism's life. Apoptosis—the primary form of regulated cell death—is relatively well defined. Necroptosis—an alternative, distinct kind of regulated cell death discovered more recently—is less well understood. Apoptosis and necroptosis can be triggered either from within the cell or by extracellular stimuli. Certain signaling components, including several death ligands and receptors, can regulate both processes. Whereas apoptosis is triggered and executed via intracellular proteases called caspases, necroptosis is suppressed by caspase activity. Here we highlight current understanding of the key signaling mechanisms that control regulated cell death.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100913-013226
2014-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/30/1/annurev-cellbio-100913-013226.html?itemId=/content/journals/10.1146/annurev-cellbio-100913-013226&mimeType=html&fmt=ahah

Literature Cited

  1. Adams JM, Cory S. 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281:53811322–26 [Google Scholar]
  2. Ashkenazi A. 2002. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat. Rev. Cancer 2:6420–30 [Google Scholar]
  3. Ashkenazi A, Dixit VM. 1998. Death receptors: signaling and modulation. Science 281:53811305–8 [Google Scholar]
  4. Austin CD, Lawrence DA, Peden AA, Varfolomeev EE, Totpal K. et al. 2006. Death-receptor activation halts clathrin-dependent endocytosis. Proc. Natl. Acad. Sci. USA 103:2710283–88 [Google Scholar]
  5. Biton S, Ashkenazi A. 2011. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 145:192–103 [Google Scholar]
  6. Boatright KM, Deis C, Denault JB, Sutherlin DP, Salvesen GS. 2004. Activation of caspases-8 and -10 by FLIPL. Biochem. J. 382:Pt. 2651–57 [Google Scholar]
  7. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H. et al. 2003. A unified model for apical caspase activation. Mol. Cell 11:2529–41 [Google Scholar]
  8. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. 1996. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 85:803–15 [Google Scholar]
  9. Chang DW, Xing Z, Capacio VL, Peter ME, Yang X. 2003. Interdimer processing mechanism of procaspase-8 activation. EMBO J. 22:4132–42 [Google Scholar]
  10. Chen W, Zhou Z, Li L, Zhong CQ, Zheng X. et al. 2013. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J. Biol. Chem. 288:2316247–61 [Google Scholar]
  11. Christofferson DE, Yuan J. 2010. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22:2263–68 [Google Scholar]
  12. Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK. et al. 2002. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:6905395–99 [Google Scholar]
  13. Conus S, Perozzo R, Reinheckel T, Peters C, Scapozza L. et al. 2008. Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J. Exp. Med. 205:3685–98 [Google Scholar]
  14. Conus S, Pop C, Snipas SJ, Salvesen GS, Simon HU. 2012. Cathepsin D primes caspase-8 activation by multiple intra-chain proteolysis. J. Biol. Chem. 287:2521142–51 [Google Scholar]
  15. Cowling V, Downward J. 2002. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 9:101046–56 [Google Scholar]
  16. Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M. et al. 2013. Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol. Cell 49:61034–48 [Google Scholar]
  17. Danial NN, Korsmeyer SJ. 2004. Cell death: critical control points. Cell 116:2205–19 [Google Scholar]
  18. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O. et al. 2008. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4:5313–21 [Google Scholar]
  19. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P. et al. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1:2112–19 [Google Scholar]
  20. Deveraux QL, Reed JC. 1999. IAP family proteins—suppressors of apoptosis. Genes Dev. 13:3239–52 [Google Scholar]
  21. Dickens LS, Boyd RS, Juke-Jones R, Hughes MA, Robinson GL. et al. 2012. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol. Cell 47:2291–305 [Google Scholar]
  22. Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB. et al. 2012. Survival function of the FADD-CASPASE-8-cFLIPL complex. Cell Rep. 1:5401–7 [Google Scholar]
  23. Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G. et al. 2014. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157:51189–202 [Google Scholar]
  24. Dix MM, Simon GM, Cravatt BF. 2008. Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:4679–91 [Google Scholar]
  25. Dohrman A, Kataoka T, Cuenin S, Russell JQ, Tschopp J, Budd RC. 2005. Cellular FLIP (long form) regulates CD8+ T cell activation through caspase-8-dependent NF-κB activation. J. Immunol. 174:95270–78 [Google Scholar]
  26. Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S. et al. 2013. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 20:101381–92 [Google Scholar]
  27. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A. et al. 2014. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7:4971–81 [Google Scholar]
  28. Donepudi M, MacSweeney A, Briand C, Grütter MG. 2003. Insights into the regulatory mechanism for caspase-8 activation. Mol. Cell 11:543–49 [Google Scholar]
  29. Ehrlich S, Infante-Duarte C, Seeger B, Zipp F. 2003. Regulation of soluble and surface-bound TRAIL in human T cells, B cells, and monocytes. Cytokine 24:6244–53 [Google Scholar]
  30. Eimon PM, Ashkenazi A. 2010. The zebrafish as a model organism for the study of apoptosis. Apoptosis 15:3331–49 [Google Scholar]
  31. Ellis HM, Horvitz HR. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44:6817–29 [Google Scholar]
  32. Engel C, Versmold B, Wappenschmidt B, Simard J, Easton DF. et al. 2010. Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol. Biomark. Prev. 19:112859–68 [Google Scholar]
  33. Feig C, Tchikov V, Schütze S, Peter ME. 2007. Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J. 26:1221–31 [Google Scholar]
  34. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C. et al. 2011. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43:3449–63 [Google Scholar]
  35. Finlay D, Howes A, Vuori K. 2009. Critical role for caspase-8 in epidermal growth factor signaling. Cancer Res. 69:125023–29 [Google Scholar]
  36. Ganten TM, Koschny R, Skyora J, Schulze-Bergkamen H, Büchler P. et al. 2006. Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin. Cancer Res. 12:82640–46 [Google Scholar]
  37. Gonzalvez F, Ashkenazi A. 2010. New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29:344752–65 [Google Scholar]
  38. Gonzalvez F, Lawrence D, Yang B, Yee S, Pitti R. et al. 2012. TRAF2 sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer. Mol. Cell 48:6888–99 [Google Scholar]
  39. Graf RP, Keller N, Barbero S, Stupack D. 2014. Caspase-8 as a regulator of tumor cell motility. Curr. Mol. Med. 14:2246–54 [Google Scholar]
  40. Green DR, Oberst A, Dillon CP, Weinlich R, Salvesen GS. 2011. RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Mol. Cell 44:19–16 [Google Scholar]
  41. Green DR, Reed JC. 1998. Mitochondria and apoptosis. Science 281:53811309–12 [Google Scholar]
  42. Grønbaek K, Dalby T, Zeuthen J, Ralfkiaer E, Guidberg P. 2000. The V410I (G1228A) variant of the caspase-10 gene is a common polymorphism of the Danish population. Blood 95:62184–85 [Google Scholar]
  43. Halaas O, Vik R, Ashkenazi A, Espevik T. 2000. Lipopolysaccharide induces expression of APO2 ligand/TRAIL in human monocytes and macrophages. Scand. J. Immunol. 51:3244–50 [Google Scholar]
  44. Han DKM, Chaudhary PM, Wright ME, Friedman C, Trask BJ. et al. 1997. MRIT, a novel death-effector domain-containing protein, interacts with caspases and Bcl-XL and initiates cell death. Proc. Natl. Acad. Sci. USA 94:11333–38 [Google Scholar]
  45. Hardwick JM, Youle RJ. 2009. SnapShot: BCL-2 proteins. Cell 138:2404.e1–e2 [Google Scholar]
  46. He S, Wang L, Miao L, Wang T, Du F. et al. 2009. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137:61100–11 [Google Scholar]
  47. Hengartner MO, Horvitz HR. 1994. Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 4:4581–86 [Google Scholar]
  48. Holler N, Zaru R, Micheau O, Thome M, Attinger A. et al. 2000. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1:6489–95 [Google Scholar]
  49. Hu S, Vincenz C, Ni J, Gentz R, Dixit VM. 1997. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD-95-induced apoptosis. J. Biol. Chem. 272:2817255–57 [Google Scholar]
  50. Huang QQ, Perlman H, Huang Z, Birkett R, Kan L. et al. 2010. FLIP: a novel regulator of macrophage differentiation and granulocyte homeostasis. Blood 116:234968–77 [Google Scholar]
  51. Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M. 2009. Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol. Cell 35:3265–79 [Google Scholar]
  52. Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O'Connell M. et al. 1999. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4:4563–71 [Google Scholar]
  53. Ikner A, Ashkenazi A. 2011. TWEAK induces apoptosis through a death-signaling complex comprising receptor-interacting protein 1 (RIP1), Fas-associated death domain (FADD), and caspase-8. J. Biol. Chem. 286:2421546–54 [Google Scholar]
  54. Imamura R, Konaka K, Matsumoto N, Hasegawa M, Fukui M. et al. 2004. Fas ligand induces cell-autonomous NF-κB activation and interleukin-8 production by a mechanism distinct from that of tumor necrosis factor-α. J. Biol. Chem. 279:4546415–23 [Google Scholar]
  55. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K. et al. 1997. Inhibition of death receptor signals by cellular FLIP. Nature 388:190–95 [Google Scholar]
  56. Jin Z, Li Y, Pitti R, Lawrence D, Pham V, Lill J, Ashkenazi A. 2009. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:4721–35 [Google Scholar]
  57. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP. et al. 2011. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:7338368–72 [Google Scholar]
  58. Kaiser WJ, Upton JW, Mocarski ES. 2013. Viral modulation of programmed necrosis. Curr. Opin. Virol. 3:3296–306 [Google Scholar]
  59. Kang TB, Oh GS, Scandella E, Bolinger B, Ludewig B. et al. 2008. Mutation of a self-processing site in caspase-8 compromises its apoptotic but not its nonapoptotic functions in bacterial artificial chromosome-transgenic mice. J. Immunol. 181:42522–32 [Google Scholar]
  60. Keller N, Mares J, Zerbe O, Grütter MG. 2009. Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation. Structure 17:3438–48 [Google Scholar]
  61. Kerr JF, Wyllie AH, Currie AR. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:4239–57 [Google Scholar]
  62. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M. et al. 1995. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14:225579–88 [Google Scholar]
  63. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. 2000. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:6611–20 [Google Scholar]
  64. Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A. et al. 2001. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276:4946639–46 [Google Scholar]
  65. Kohlhaas SL, Craxton A, Sun XM, Pinkoski MJ, Cohen GM. 2007. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. J. Biol. Chem. 282:1712831–41 [Google Scholar]
  66. Lamy L, Ngo VN, Emre NCT, Shaffer AL, Yang Y. et al. 2013. Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 23:4435–49 [Google Scholar]
  67. Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D. et al. 2001. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat. Med. 7:4383–85 [Google Scholar]
  68. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA. et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:7484495–501 [Google Scholar]
  69. Lens SMA, Kataoka T, Fortner KA, Tinel A, Ferrero I. et al. 2002. The caspase 8 inhibitor c-FLIPL modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Mol. Cell. Biol. 22:155419–33 [Google Scholar]
  70. Leverrier S, Salvesen GS, Walsh CM. 2011. Enzymatically active single chain caspase-8 maintains T-cell survival during clonal expansion. Cell Death Differ. 18:190–98 [Google Scholar]
  71. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K. et al. 2012. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150:2339–50 [Google Scholar]
  72. Lu JV, Weist BM, van Raam BJ, Marro BS, Nguyen LV. et al. 2011. Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc. Natl. Acad. Sci. USA 108:3715312–17 [Google Scholar]
  73. Lu M, Lawrence D, Marsters S, Acosta-Alvear D, Mendez A. et al. 2014a. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345:98–101 [Google Scholar]
  74. Lu M, Marsters S, Ye X, Luis E, Gonzalez L, Ashkenazi A. 2014b. E-cadherin couples death receptors to the cytoskeleton to regulate apoptosis. Mol. Cell 54:6987–98 [Google Scholar]
  75. Mace PD, Riedl SJ. 2010. Molecular cell death platforms and assemblies. Curr. Opin. Cell Biol. 22:6828–36 [Google Scholar]
  76. Mahrus S, Trinidad JC, Barkan DT, Sali A, Burlingame AL. et al. 2008. Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134:5866–76 [Google Scholar]
  77. Martin SJ, Amarante-Mendes GP, Shi L, Chuang TH, Casiano CA. et al. 1996. The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J. 15:2407–16 [Google Scholar]
  78. Martin SJ, Green DR. 1995. Protease activation during apoptosis: Death by a thousand cuts?. Cell 82:3349–52 [Google Scholar]
  79. Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, Nagata S. 2000. Necrotic death pathway in FAS receptor signaling. J. Cell Biol. 151:61247–56 [Google Scholar]
  80. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M. et al. 1997a. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16:102794–804 [Google Scholar]
  81. Medema JP, Toes RE, Scaffidi C, Zheng TS, Flavell RA. et al. 1997b. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur. J. Immunol. 27:123492–98 [Google Scholar]
  82. Micheau O, Thome M, Schneider P, Holler N, Tschopp J. et al. 2002. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J. Biol. Chem. 277:4745162–71 [Google Scholar]
  83. Micheau O, Tschopp J. 2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:2181–90 [Google Scholar]
  84. Mielgo A, Torres VA, Schmid MC, Graf R, Zeitlin SG. et al. 2009. The death effector domains of caspase-8 induce terminal differentiation. PLOS ONE 4:11e7879 [Google Scholar]
  85. Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G. et al. 2014. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. J. Cell Biol. 204:4607–23 [Google Scholar]
  86. Nagata S. 1997. Apoptosis by death factor. Cell 88:3355–65 [Google Scholar]
  87. Narayan N, Lee IH, Borenstein R, Sun J, Wong R. et al. 2012. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 492:7428199–204 [Google Scholar]
  88. Narayan N, Lee IH, Borenstein R, Sun J, Wong R. et al. 2014. Retraction: The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 506:509516 [Google Scholar]
  89. Newton K, Hildebrand JM, Shen Z, Rodriguez D, Alvarez-Diaz S. et al. 2014a. Is SIRT2 required for necroptosis?. Nature 506:E4–E6 [Google Scholar]
  90. Newton K, Dugger DL, Wickliffe KE, Kapoor N, de-Almagro MC. et al. 2014b. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343:61771357–60 [Google Scholar]
  91. O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R. et al. 2011. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol. 13:121437–42 [Google Scholar]
  92. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P. et al. 2011. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471:7338363–67 [Google Scholar]
  93. Oberst A, Pop C, Tremblay AG, Blais V, Denault JB. et al. 2010. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J. Biol. Chem. 285:16632–42 [Google Scholar]
  94. Peter ME, Krammer PH. 2003. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 10:126–35 [Google Scholar]
  95. Pham VC, Pitti R, Anania VG, Bakalarski CE, Bustos D. et al. 2012. Complementary proteomic tools for the dissection of apoptotic proteolysis events. J. Proteome Res. 11:52947–54 [Google Scholar]
  96. Pop C, Fitzgerald P, Green DR, Salvesen GS. 2007. Role of proteolysis in caspase-8 activation and stabilization. Biochemistry 46:144398–407 [Google Scholar]
  97. Pop C, Oberst A, Drag M, Van Raam BJ, Riedl SJ. et al. 2011. FLIPL induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem. J. 433:3447–57 [Google Scholar]
  98. Pop C, Salvesen GS. 2009. Human caspases: activation, specificity, and regulation. J. Biol. Chem. 284:3321777–81 [Google Scholar]
  99. Rasper DM, Vaillancourt JP, Hadano S, Houtzager VM, Seiden I. et al. 1998. Cell death attenuation by ‘Usurpin’, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ. 5:4271–88 [Google Scholar]
  100. Riedl SJ, Shi Y. 2004. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5:11897–907 [Google Scholar]
  101. Roca FJ, Ramakrishnan L. 2013. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153:3521–34 [Google Scholar]
  102. Sakamaki K, Inoue T, Asano M, Sudo K, Kazama H. et al. 2002. Ex vivo whole-embryo culture of caspase-8-deficient embryos normalize their aberrant phenotypes in the developing neural tube and heart. Cell Death Differ. 9:111196–206 [Google Scholar]
  103. Salvesen GS, Ashkenazi A. 2011. Snapshot: caspases. Cell 147:2476 [Google Scholar]
  104. Scaffidi C, Schmitz I, Krammer PH, Peter ME. 1999. The role of c-FLIP in modulation of CD95-induced apoptosis. J. Biol. Chem. 274:31541–48 [Google Scholar]
  105. Schleich K, Warnken U, Fricker N, Öztürk S, Richter P. et al. 2012. Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol. Cell 47:2306–19 [Google Scholar]
  106. Schneider P, Schwenzer R, Haas E, Mühlenbeck F, Schubert G. et al. 1999. TWEAK can induce cell death via endogenous TNF and TNF receptor 1. Eur. J. Immunol. 29:61785–92 [Google Scholar]
  107. Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ. et al. 2009. The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457:72321019–22 [Google Scholar]
  108. Shu HB, Halpin DR, Goeddel DV. 1997. Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6:6751–63 [Google Scholar]
  109. Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M. et al. 2000. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288:54752354–57 [Google Scholar]
  110. Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H. 2002. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 21:174520–30 [Google Scholar]
  111. Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P. et al. 2000. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:6599–609 [Google Scholar]
  112. Stupack DG. 2010. Caspase-8 as a therapeutic target in cancer. Cancer Lett 332:133–40 [Google Scholar]
  113. Sun L, Wang H, Wang Z, He S, Chen S. et al. 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:1–2213–27 [Google Scholar]
  114. Tait SW, Green DR. 2008. Caspase-independent cell death: leaving the set without the final cut. Oncogene 27:506452–61 [Google Scholar]
  115. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C. et al. 2011. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43:3432–48 [Google Scholar]
  116. Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A. et al. 2013. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl. Acad. Sci. USA 110:8E3109–18 [Google Scholar]
  117. Thome M, Tschopp J. 2001. Regulation of lymphocyte proliferation and death by FLIP. Nat. Rev. Immunol. 1:150–58 [Google Scholar]
  118. Thompson CB. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267:52031456–62 [Google Scholar]
  119. Thornberry NA, Lazebnik Y. 1998. Caspases: enemies within. Science 281:53811312–16 [Google Scholar]
  120. van Raam BJ, Salvesen GS. 2012. Proliferative versus apoptotic functions of caspase-8: hetero or homo: the caspase-8 dimer controls cell fate. Biochim. Biophys. Acta 1824:1113–22 [Google Scholar]
  121. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M. et al. 2010. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 17:6922–30 [Google Scholar]
  122. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11:10700–14 [Google Scholar]
  123. Vanlangenakker N, Vanden Berghe T, Vandenabeele P. 2012. Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 19:175–86 [Google Scholar]
  124. Varfolomeev E, Schumann M, Luria V, Chiannilkulchai JS, Beckman IL. et al. 1998. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal perinatally. Immunity 9:2267–76 [Google Scholar]
  125. Varfolomeev E, Maecker H, Sharpa D, Lawrence D, Renz M. et al. 2005. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J. Biol. Chem. 280:4940599–608 [Google Scholar]
  126. Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G. et al. 1998. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187:91477–85 [Google Scholar]
  127. Vucic D, Dixit VM, Wertz IE. 2011. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat. Rev. Mol. Cell Biol. 12:7439–52 [Google Scholar]
  128. Wachmann K, Pop C, van Raam BJ, Drag M, Mace PD. et al. 2010. Activation and specificity of human caspase-10. Biochemistry 49:388307–15 [Google Scholar]
  129. Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM. et al. 2007. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 13:91070–77 [Google Scholar]
  130. Walczak H. 2011. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol. Rev. 244:19–28 [Google Scholar]
  131. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. 1999. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17:331–67 [Google Scholar]
  132. Wang H, Sun L, Su L, Rizo J, Liu L. et al. 2014. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54:1133–46 [Google Scholar]
  133. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ. 2001. Caspase-10 is an initiator caspase in death receptor signaling. Proc. Natl. Acad. Sci. USA 98:2413884–88 [Google Scholar]
  134. Wang L, Du F, Wang X. 2008. TNF-α induces two distinct caspase-8 activation pathways. Cell 133:4693–703 [Google Scholar]
  135. Wang L, Yang JK, Kabaleeswaran V, Rice AJ, Cruz AC. et al. 2010. The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat. Struct. Mol. Biol. 17:111324–29 [Google Scholar]
  136. Wang Z, Jiang H, Chen S, Du F, Wang X. 2012. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:1–2228–43 [Google Scholar]
  137. Wilson NS, Dixit V, Ashkenazi A. 2009. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol. 10:4348–55 [Google Scholar]
  138. Wilson NS, Yang A, Yang B, Cuoto S, Stern H. et al. 2012. Proapoptotic activation of death receptor 5 on tumor endothelial cells disrupts the vasculature and reduces tumor growth. Cancer Cell 22:180–90 [Google Scholar]
  139. Worth A, Thrasher AJ, Gaspar HB. 2006. Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype. Br. J. Haematol. 133:2124–40 [Google Scholar]
  140. Wu W, Rinaldi L, Fortner KA, Russell JQ, Tschopp J. et al. 2004. Cellular FLIP long form-transgenic mice manifest a Th2 cytokine bias and enhanced allergic airway inflammation. J. Immunol. 172:84724–32 [Google Scholar]
  141. Yeh WC, Itie A, Elia AJ, Ng M, Shu HB. et al. 2000. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12:6633–42 [Google Scholar]
  142. Yeh WC, de la Pompa JL, McCurrach ME, Shu HB, Elia AJ. et al. 1998. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279:53581954–58 [Google Scholar]
  143. Yu JW, Jeffrey PD, Shi Y. 2009. Mechanism of procaspase-8 activation by c-FLIPL. Proc. Natl. Acad. Sci. USA 106:208169–74 [Google Scholar]
  144. Zhang J, Cado D, Chen A, Kabra N, Winoto A. 1998. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392:392296–300 [Google Scholar]
  145. Zhang H, Zhou X, McQuade T, Li J, Chan FKM, Zhang J. 2011. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471:7338373–76 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100913-013226
Loading
/content/journals/10.1146/annurev-cellbio-100913-013226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error