Skip to main content
Log in

Lessons learnt from the Tasmanian devil facial tumour regarding immune function in cancer

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Genetic and genomic technologies have facilitated a greater understanding of the Tasmanian devil immune system and the origins, evolution and spread of devil facial tumour disease (DFTD). DFTD is a contagious cancer that has caused significant declines in devil populations across Tasmania. Immune responses to DFTD are rarely detected, allowing the cancer to pass between individuals and proliferate unimpeded. Early immunosenscence in devils appears to decrease anti-tumour immunity in older animals compared to younger animals, which may increase susceptibility to DFTD and explain high DFTD prevalence in this age group. Devils also have extremely low major histocompatibility complex (MHC) diversity, and multiple alleles are shared with the tumour, lowering histocompatibility barriers which may have contributed to DFTD evolution. DFTD actively evades immune attack by down-regulating cell-surface MHC I molecules, making it effectively invisible to the immune system. Altered MHC I profiles should activate natural killer (NK) cell anti-tumour responses, but these are absent in DFTD infection. Recent immunisation and immunotherapy using modified DFTD cells has induced an anti-DFTD immune response and regression of DFTD in some devils. Knowledge gained from immune responses to a transmissible cancer in devils will ultimately reveal useful insights into immunity to cancer in humans and other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bjorkman PJ (1990) Structure, function and diversityof class I major histocompatability complex molecules. Annu Rev Biochem 59:254–288

    Article  Google Scholar 

  • Bradshaw CJA, Brook BW (2005) Disease and the devil: density-dependent epidemiological processes explain historical population fluctuations in the Tasmanian devil. Ecography 28:181–190

    Article  Google Scholar 

  • Brown OJF (2006) Tasmanian devil (Sarcophilus harrisii) extinction on the Australian mainland in the mid-Holocene: multicausality and ENSO intensification. Alcheringa 30:49–57

    Article  Google Scholar 

  • Brown GK, Kreiss A, Lyons AB, Woods GM (2011) Natural killer cell mediated cytotoxic responses in the Tasmanian devil. PLoS ONE 6:1–10

    Google Scholar 

  • Brown GK et al (2016) Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells. Immunol Cell Biol 94:673–679

    Article  CAS  Google Scholar 

  • Bruniche-Olsen A, Jones ME, Austin JJ, Burridge CP, Holland BR (2014) Extensive population decline in the Tasmanian devil predates European settlement and devil facial tumour disease. Biol Lett 10:20140619

    Article  Google Scholar 

  • Carson WE et al (2001) Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Eur J Immunol 31:3016–3025

    Article  CAS  Google Scholar 

  • Cheng Y, Belov K (2014) Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 66:727–735. https://doi.org/10.1007/s00251-014-0804-3

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Sanderson CE, Jones M, Belov K (2012a) Low MHC class II diversity in the Tasmanian devil. Immunogenetics 64:525–533

    Article  CAS  Google Scholar 

  • Cheng Y et al (2012b) Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC. BMC Genom 13:87

    Article  CAS  Google Scholar 

  • Cheng Y et al (2017) Significant decline in anticancer immune capacity during puberty in the Tasmanian devil. Sci Rep 7:e44716

    Article  Google Scholar 

  • Coffelt SB, de Visser KE (2015) Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends Immunol 36:198–216

    Article  CAS  Google Scholar 

  • Cui J, Cheng Y, Belov K (2015) Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 67:195–201. https://doi.org/10.1007/s00251-014-0823-0

    Article  CAS  PubMed  Google Scholar 

  • Dajon M, Iribarren K, Cremer I (2017) Toll-like receptor stimulation in cancer: a pro- and anti-tumor double-edged sword. Immunobiology 222:89–100

    Article  CAS  Google Scholar 

  • Ethier J, Desautels D, Templeton A, Shah PS, Amir E (2017) Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: a systematic review and meta-analysis. Breast Cancer Res 19:2

    Article  Google Scholar 

  • Flies AS et al (2016) PD-L1 is not constitutively expressed on Tasmanian devil facial tumour cells but is strongly upregulated in response to IFN-gamma and can be expressed in the tumour microenvironment. Front Immunol 7:581

    Article  Google Scholar 

  • Ganguly B, Das U, Das AK (2016) Canine transmissible venereal tumour: a review. Vet Comp Oncol 14:1–12. https://doi.org/10.1111/vco.12060

    Article  CAS  PubMed  Google Scholar 

  • Gu X et al (2016) Prognostic significance of neutrophil-to-lymphocyte ratio in prostate cancer: evidence from 16,266 patients. Sci Rep 6:22089

    Article  CAS  Google Scholar 

  • Guthrie GJK, Charles KA, Roxburhgh CSD, Horgan PG, McMillan DC, Clarke SJ (2013) The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol 88:218–230

    Article  Google Scholar 

  • Hamede R, McCallum H, Jones M (2013) Biting injuries and transmission of Tasmanian devil facial tumour disease. J Anim Ecol 82:182–190

    Article  Google Scholar 

  • Hawkins CE et al (2006) Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol Conserv 131:307–324

    Article  Google Scholar 

  • Haynes JI (2001) The marsupial and monotreme thymus revisited. J Zool 253:167–173

    Article  Google Scholar 

  • Howson LJ et al (2014) Identification of dendritic cells, B cell and T cell subsets in Tasmanian devil lymphoid tissue; evidence of poor immune cell infiltration into devil facial tumours. Anat Rec 297:925–938

    Article  CAS  Google Scholar 

  • Hubbard G, Saphire D, Hackleman S, Silva M, Vandeberg JL, Stone W (1991) Ontogeny of the thymus gland of a marsupial (Monodelphis domestica). Lab Anim Sci 41:227–232

    CAS  PubMed  Google Scholar 

  • Jones ME, Paetkau D, Geffen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209

    Article  CAS  Google Scholar 

  • Jones ME et al (2008) Life history change in disease-ravaged Tasmanian devil populations. Proc Natl Acad Sci 105:10023–10027

    Article  CAS  Google Scholar 

  • Jones EA, Cheng Y, O’Meally D, Belov K (2017) Characterisation of the antimicrobial peptide family defensins in the Tasmanian devil (Sarocphilus harrisii), koala (Phascolarctos cinereus), and tammar wallaby (Macropus eugenii). Immunogenetics 69:133–143

    Article  CAS  Google Scholar 

  • Keaney MA, Hirte H, McPhail S, Fernando L, Belanger R, Richter M (1979) The antibody-dependent cell-mediated cytotoxic reaction I the morphological functional heterogeneity of the rabbot cytotoxic cells. Immunology 38:665–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreiss A, GFox N, Bergfield J, Quinn SJ, Pyecroft S, Woods GM (2008) Assessment of cellular immune responses of healthy and diseased Tasmanian devils (Sarcophilus harrisii). Dev Comp Immunol 32:544–553

    Article  CAS  Google Scholar 

  • Kreiss A, Cheng Y, Kimble F, Wells B, Donovan S, Belov K, Woods GM (2011) Allogrecogniion in the Tasmanian devil (Sarocphilus harrisii), an endangered marsupial species with limited genetic diversity. PLoS ONE 6:e22402

    Article  CAS  Google Scholar 

  • Kreiss A, Brown GK, Tovar C, Lyons AB, Woods GM (2015) Evidence for induction of humoral and cytotoxic immune responses against devil facial tumour disease cels in Tasmanian devils (Sarcophilus harrisii) immunized with killed cell preparations. Vaccine 33:3016–3025

    Article  CAS  Google Scholar 

  • Loh R, Bergfield J, Hayes D, O’Hara A, Pyecroft S, Raidal S, R S (2006a) The pathology of Devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii). Vet Pathol 43:890–895

    Article  CAS  Google Scholar 

  • Loh R, Hayes D, Mahjoor A, O’Hara A, Pyecroft S, Raidal S (2006b) The immunohistochemical characterization of Devil facial tumor disease (DFTD) in the Tasmanian devil (Sarcophilus harrisii). Vet Pathol 43:896–903

    Article  CAS  Google Scholar 

  • Manley NR, Blackburn ERR, Condie CC, Sage BR J (2011) Strucure and function of the thymic microenvironment. Front Biosci 16:2461–2477

    Article  CAS  Google Scholar 

  • McCallum H et al (2009) Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction. Ecology 90:3379–3392. https://doi.org/10.2307/25660985

    Article  PubMed  Google Scholar 

  • Metzger MJ, Reinisch C, Sherry J, Goff SP (2015) Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161:255–263

    Article  CAS  Google Scholar 

  • Metzger MJ et al (2016) Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534:705–709

    Article  CAS  Google Scholar 

  • Morris K, Belov K (2013) Does the devil facial tumour produce immunosuppressive cytokines as an immune evasion strategy? Vet Immunol Immunopathol 153:159–164

    Article  CAS  Google Scholar 

  • Morris B, Cheng Y, Warren W, Papenfuss AT, Belov K (2015) Identification and analysis of divergent immune gene families within the Tasmanian devil genome. BMC Genom 16:1017

    Article  Google Scholar 

  • Murchison EP et al (2010) The Tasmanian devil transcriptome reveals schwann cell origins in a clonally transmissible cancer. Science 327:84–87

    Article  CAS  Google Scholar 

  • Murchison EP et al (2012) Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:780–791

    Article  CAS  Google Scholar 

  • Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA (2006) Clonal origin and evolution of a transmissible cancer. Cell 126:477–487

    Article  CAS  Google Scholar 

  • Owen D, Pemberton D (2005) Tasmanian devil: a unique and threatened animal. Allen & Unwin, Sydney

    Google Scholar 

  • Paddle R (2000) The last Tasmanian tiger: the history and extinction of the thylacine. Cambridge University Press, Cambridge

    Google Scholar 

  • Pahl J, Cerwenka A (2017) Tricking the balance: NK cells in anti-cancer immunity. Immunobiology 222:11–20

    Article  CAS  Google Scholar 

  • Patchett AL, Latham R, Brettingham-Moore KH, Tovar C, Lyons AB, Woods GM (2015) Toll-like receptor signaling is functional in immune cells of the endangered Tasmanian devil. Dev Comp Immunol 53:123–133

    Article  CAS  Google Scholar 

  • Patchett AL, Tovar C, Corcoran LM, Lyons AB, Woods GM (2017) The toll-like receptor ligands Hiltonol (polyICLC) and imiquimod effectively activate antigen-specific immune responses in Tasmanian devils (Sarcophilus harrisii). Dev Comp Immunol 76:352–360

    Article  CAS  Google Scholar 

  • Pearse AM, Swift K (2006) Transmission of devil facial-tumour disease. Nature 439:549

    Article  CAS  Google Scholar 

  • Peck S, Corkrey R, Hamede R, Jones M, Canfield P (2016) Hematologic and serum biochemical changes associated with devil facial tumour disease in Tasmanian devils. Vet Clin Pathol 45:417–429

    Article  Google Scholar 

  • Peel E, Belov K (2017) Immune-endocrine interactions in marsupials and monotremes. Gen Comp Endocrinol 244:178–185

    Article  CAS  Google Scholar 

  • Peel E, Cheng Y, Djordjevic JT, Fox S, Sorrell TC, Belov K (2016) Cathelicidins in the Tasmanian devil (Sarcophilus harrisii). Sci Rep 6:e35019

    Article  Google Scholar 

  • Perez-de-Heredia F et al (2015) Influence of sex, age, pubertal maturation and body mass index on circulating white blood cell counts in healthy european adolescents - the HELENA study. Eur J Pediatr 174:999–1014

    Article  Google Scholar 

  • Pye E et al (2016a) Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. Biol Lett. https://doi.org/10.1098/rsbl.2016.0553

    Article  PubMed  PubMed Central  Google Scholar 

  • Pye RJ et al (2016b) A second transmissible cancer in Tasmanian devils. Proc Natl Acad Sci 113:374–379

    Article  CAS  Google Scholar 

  • Pye RJ, Woods GM, Kreiss A (2016c) Devil facial tumour disease. Vet Pathol 53:726–736

    Article  CAS  Google Scholar 

  • Pye R et al (2018) Immunization strategies producing a humoral IgG immune response against devil facial tumour disease in the majority of Tasmanian devils destined for wild release. Front Immunol 9:259

    Article  Google Scholar 

  • Pyecroft SB et al (2007) Towards a case definition for devil facial tumour disease: what is it? EcoHealth 4:346–351

    Article  Google Scholar 

  • Quattrocchi V, Pappalardo JS, Langellotti C, Smitsaart E, Fondevila N, Zamorano P (2014) Early protection against foot-and-mouth disease virus in cattle using an inactivated vaccine formulated with Montanide ESSAI IMS D 12802 VG PR adjuvant. Vaccine 32:2167–2172

    Article  CAS  Google Scholar 

  • Richers CD, Hoekstra MJ, du Pont JS, Kreis RW, Kamperdijk EWA (2003) Immunology of skin transplantation. Clin Dermatol 23:338–342

    Article  Google Scholar 

  • Save The Tasmanian Devil Program (2015) The disease. http://www.tassiedevil.com.au/tasdevil.nsf/Te-Disease/979FEB5F116CE371CA2576CB0011A26E. 2018

  • Schuurs AHWM, Verheul HAM (1990) Effects of gender and sex steroids on the immune response. J Steroid Biochem 35:157–172

    Article  CAS  Google Scholar 

  • Siddle HV et al (2007a) Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci 104:16221–16226

    Article  CAS  Google Scholar 

  • Siddle HV, Sanderson CE, Belov K (2007b) Characterization of major histocompatability complex class I and II genes from the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 59:753–760

    Article  CAS  Google Scholar 

  • Siddle HV, Marzec J, Chen Y, Jones M, Belov K (2010) MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proc R Soc B 277:2001–2006

    Article  CAS  Google Scholar 

  • Siddle HV et al (2013) Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proc Natl Acad Sci 110:5103–5108

    Article  CAS  Google Scholar 

  • Stockmeyer B, Beyer T, Neuhuber W, Repp R, Kalden JR, Valerius T, Herrmann M (2003) Polymorphonuclear granulocytes induce antibody-dependent apoptosis in human breast cancer cells. J Immunol 171:5124–5129

    Article  CAS  Google Scholar 

  • Templeton AJ et al (2014) Progostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systemic review and meta-analysis. J Natl Cancer Inst 106:dju124

    Article  Google Scholar 

  • Tovar C, Obendorf DL, Murchison EP, Papenfuss AT, Kreiss A, Woods GM (2011) Tumor-specific diagnostic marker for transmissible facial tumors of Tasmanian devils immunohistochemistry studies. Vet Pathol 48:1195–1203

    Article  CAS  Google Scholar 

  • Tovar C et al (2017) Regression of devil facial tuomur disease following immunotherapy in immunised Tasmanian devils. Sci Rep 7:e43827

    Article  Google Scholar 

  • Uesaka T et al (2007) Expression of VEGF and its receptor genes in intracranial schwannomas. J Neuro-Oncol 83:259–266

    Article  CAS  Google Scholar 

  • Ujvari B et al (2012) Telomere dynamics and homeostasis in a transmissible cancer. PLoS ONE 7:e44085

    Article  CAS  Google Scholar 

  • Ujvari B et al (2014) Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours. Evol Appl 7:260–265

    Article  Google Scholar 

  • Ujvari B, Gatenby RA, Thomas F (2016) The evolutionary ecology of transmissible cancers Infection. Genet Evol 39:293–303

    Article  Google Scholar 

  • Valmori D et al (2007) Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci 104:8947–8952

    Article  CAS  Google Scholar 

  • van der Kraan LE, Wong ESW, Lo N, Ujvari B, Belov K (2013) Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics 65:25–35

    Article  CAS  Google Scholar 

  • Verthelyi D (2001) Sex hormones as immunomodulators in health and disease. J Immunopharmacol 1:983–993

    Article  CAS  Google Scholar 

  • Wong ESW et al (2011) Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby. BMC Genom 12:1–12

    Article  Google Scholar 

  • Woods GM, Kreiss A, Belov K, Siddle HV, Obendorf DL, Muller HK (2007) The immune response of the Tasmanian devil (Sarcophilus harrisii) and devil facial tumour disease. EcoHealth 4:338–345

    Article  Google Scholar 

  • Zitvogel L, Kroemer G (2012) Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 1:1223–1225

    Article  Google Scholar 

Download references

Acknowledgements

Our work is supported by an Australian Research Council Discovery grant to KB. We thank current and former members of the lab and our collaborators for the significant contributions they have made to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Belov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peel, E., Belov, K. Lessons learnt from the Tasmanian devil facial tumour regarding immune function in cancer. Mamm Genome 29, 731–738 (2018). https://doi.org/10.1007/s00335-018-9782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-018-9782-3

Keywords

Navigation