Skip to main content
Log in

Behavioral Plasticity in Response to Perceived Predation Risk in Breeding House Wrens

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Predation is a significant cause of nest failure in passerine birds, and, thus, natural selection is expected to favor behavioral plasticity to allow birds to respond to perceived changes in predation risk. However, behavioral plasticity in response to perceived predation risk, and its potential fitness-related costs, are understudied. In a wild population of breeding house wrens (Troglodytes aedon), we tested the hypotheses that (1) birds show behavioral plasticity in response to perceived nest-predation risk to reduce self-risk or risk to offspring, but (2) this plasticity incurs fitness-related costs. We experimentally increased the perceived risk of nest predation by enlarging the diameter of the nestbox entrance from the standard 3.2 to 5.0 cm once incubation began. Unexpectedly, large-hole females spent significantly less time being vigilant than small-hole (control) females during late incubation. Both males and females also exhibited plasticity in their provisioning behavior. Large-hole males increased and large-hole females decreased provisioning visits with increasing brood size, whereas small-hole males and females behaved similarly and were unaffected by brood size. Females did not show plasticity in their incubation or brooding behavior. Notwithstanding this behavioral plasticity in response to increased perceived predation risk, treatment had no effect on hatching success or early hatchling survival, nor did it affect nestling body condition or fledging success. We conclude, therefore, that house wrens show behavioral plasticity in response to perceived nest-predation risk, but that any short-term fitness-related costs associated with this flexibility appear negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbey-Lee, R. N., Mathot, K. J., & Dingemanse, N. J. (2016). Behavioral and morphological responses to perceived predation risk: A field experiment in passerines. Behavioral Ecology, 27, 857–864.

    Article  Google Scholar 

  • Ardia, D. R., Pérez, J. H., & Clotfelter, E. D. (2006). Nest box orientation affects internal temperature and nest site selection by tree swallows. Journal of Field Ornithology, 77, 339–344.

    Article  Google Scholar 

  • Barnett, C. A., Clairardin, S. G., Thompson, C. F., & Sakaluk, S. K. (2011). Turning a deaf ear: A test of the manipulating androgens hypothesis in house wrens. Animal Behaviour, 81, 113–120.

    Article  Google Scholar 

  • Barnett, C. A., Thompson, C. F., & Sakaluk, S. K. (2012). Aggressiveness, boldness and parental food provisioning in male house wrens (Troglodytes aedon). Ethology, 118, 1–10.

    Article  Google Scholar 

  • Basso, A., & Richner, H. (2015). Effects of nest predation risk on female incubation behavior and offspring growth in great tits. Behavioral Ecology and Sociobiology, 69, 977–989.

    Article  Google Scholar 

  • Beckmann, C., Biro, P. A., & Martin, K. (2015). Hierarchical analysis of avian re-nesting behavior: Mean, across-individual, and intra-individual responses. Behavioral Ecology and Sociobiology, 1, 1–8.

    Google Scholar 

  • Belles-Isles, J. C., & Picman, J. (1986). Nesting losses and nest site preferences in house wrens. Condor, 88, 483–486.

    Article  Google Scholar 

  • Bowers, E. K., Nietz, D., Thompson, C. F., & Sakaluk, S. K. (2014a). Parental provisioning in house wrens: Effects of varying brood size and consequences for offspring. Behavioral Ecology, 25, 1485–1493.

    Article  Google Scholar 

  • Bowers, E. K., Hodges, C. J., Forsman, A. M., Vogel, L. A., Masters, B. S., Johnson, B. G. P., et al. (2014b). Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology, 95, 3027–3034.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowers, E. K., Bowden, R. M., Sakaluk, S. K., & Thompson, C. F. (2015). Immune activation generates corticosterone-mediated terminal reproductive investment in a wild bird. American Naturalist, 185, 769–783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cockrem, J. F., & Silverin, B. (2002). Sight of a predator can stimulate a corticosterone response in the great tit (Parus major). General and Comparative Endocrinology, 125, 248–255.

    Article  CAS  PubMed  Google Scholar 

  • Conway, C. J., & Martin, T. E. (2000). Evolution of passerine incubation behavior: Influence of food, temperature, and nest predation. Evolution, 54, 670–685.

    Article  CAS  PubMed  Google Scholar 

  • Cresswell, W. (2008). Non-lethal effects of predation in birds. Ibis, 150, 3–17.

    Article  Google Scholar 

  • Dall, S. R. X. (2010). Managing risk: The perils of uncertainty. In D. F. Westneat & C. Fox (Eds.), Evolutionary behavioral ecology (pp. 194–206). Oxford University Press: New York, NY.

    Google Scholar 

  • DeMory, M. L., Thompson, C. F., & Sakaluk, S. K. (2010). Male quality influences male provisioning in house wrens independent of attractiveness. Behavioral Ecology, 21, 1156–1164.

    Article  Google Scholar 

  • DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 2, 77–81.

    Article  Google Scholar 

  • Dunn, J. C., Hamer, K. C., & Benton, T. G. (2010). Fear for the family has negative consequences: Indirect effects of nest predators on chick growth in a farmland bird. Journal of Applied Ecology, 47, 994–1002.

    Article  Google Scholar 

  • Eckerle, K. P., & Thompson, C. F. (2006). Mate choice in house wrens: Nest cavities trump male characteristics. Behaviour, 143, 253–271.

    Article  Google Scholar 

  • Eggers, S., Grieser, M., Nystrand, M., & Ekman, J. (2006). Predation risk induces changes in nest-site selection and clutch size in the Siberian jay. Proceedings of the Royal Society of London B, 273, 701–706.

    Article  Google Scholar 

  • Ekner-Grzyb, A., Zolnierowicz, K. M., Lisicki, D., & Tobolka, M. (2014). Habitat selection taking nest-box age into account: A field experiment in secondary hole-nesting birds. Folia Zoologica, 63, 251–255.

    Google Scholar 

  • Engqvist, L. (2005). The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Animal Behaviour, 70, 967–971.

    Article  Google Scholar 

  • Finch, D. M. (1989). Relationships of surrounding riparian habitat to nest-box use and reproductive outcome in house wrens. Condor, 91, 848–859.

    Article  Google Scholar 

  • Fontaine, J. J., & Martin, T. E. (2006). Parent birds assess nest predation risk and adjust their reproductive strategies. Ecology Letters, 9, 428–434.

    Article  CAS  PubMed  Google Scholar 

  • Forstmeier, W., & Weiss, I. (2004). Adaptive plasticity in nest-site selection in response to changing predation risk. Oikos, 104, 487–499.

    Article  Google Scholar 

  • García-Berthou, E. (2001). On the misuse of residuals in ecology: Testing regression residuals versus the analysis of covariance. Journal of Animal Ecology, 70, 708–711.

    Article  Google Scholar 

  • Ghalambor, C. K., & Martin, T. E. (2001). Fecundity-survival trade-offs and parental risk-taking in birds. Science, 292, 494–497.

    Article  CAS  PubMed  Google Scholar 

  • Ghalambor, C. K., & Martin, T. E. (2002). Comparative manipulation of predation risk in incubating birds reveals variability in the plasticity of responses. Behavioral Ecology, 13, 101–108.

    Article  Google Scholar 

  • Ghalambor, C. K., Peluc, S. I., & Martin, T. E. (2013). Plasticity of parental care under the risk of predation: How much should parents reduce care? Biology Letters, 9, 1–4.

    Article  Google Scholar 

  • Grana, S. C., Sakaluk, S. K., Bowden, R. M., Doellman, M. A., Vogel, L. A., & Thompson, C. F. (2012). Reproductive allocation in female house wrens is not influenced by experimentally altered male attractiveness. Behavioral Ecology and Sociobiology, 66, 1247–1258.

    Article  Google Scholar 

  • Greenwalt, C. H., & Jones, F. M. (1955). Photographic studies of the feeding of nestling house wrens. American Scientist, 43, 541–549.

    Google Scholar 

  • Hepp, G. R., Kennamer, R. A., & Johnson, M. H. (2006). Maternal effects in wood ducks: Incubation temperature influences incubation period and neonate phenotype. Functional Ecology, 20, 307–314.

    Article  Google Scholar 

  • Hua, F., Sieving, K. E., Fletcher, R. J., Jr., & Wright, C. A. (2014). Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance. Behavioral Ecology, 25, 509–519.

    Article  Google Scholar 

  • Ibáñez-Álamo, J. D., Magrath, R. D., Oteyza, J. C., Chalfoun, A. D., Haff, T. M., Schmidt, K. A., et al. (2015). Nest predation research: Recent findings and future perspectives. Journal of Ornithology, 156(Suppl 1), S247–S262.

    Article  Google Scholar 

  • Johnson, L. S. (2014). House wren (Troglodytes aedon). In A. Poole (Ed.), The birds of North America online (2nd ed.). Ithaca, NY: Cornell Lab of Ornithology and American Ornithologists’ Union. doi:10.2173/bna.380.

    Google Scholar 

  • Komdeur, J., & Kats, R. K. H. (1999). Predation risk affects trade-off between nest guarding and foraging in Seychelles warblers. Behavioral Ecology, 10, 648–658.

    Article  Google Scholar 

  • Kovařík, P., & Pavel, V. (2011). Does threat to the nest affect incubation rhythm in a small passerine? Ethology, 117, 181–187.

    Article  Google Scholar 

  • LaManna, J. A., & Martin, T. E. (2016). Costs of fear: Behavioural and life-history responses to risk and their demographic consequences vary across species. Ecology Letters, 19, 403–413.

    Article  PubMed  Google Scholar 

  • Lambrechts, M. M., Adriaensen, F., Ardia, D. R., Artemyev, A. V., Atiénzar, F., Banbura, J., et al. (2010). The design of artificial nestboxes for the study of secondary hole-nesting birds: A review of methodological inconsistencies and potential biases. Acta Ornithologica, 45, 1–26.

    Article  Google Scholar 

  • Leech, S. M., & Leonard, M. L. (1997). Begging and the risk of predation in nestling birds. Behavioral Ecology, 8, 644–646.

    Article  Google Scholar 

  • Lima, S. L. (1998). Nonlethal effects in the ecology of predator-prey interactions. BioScience, 48, 25–34.

    Article  Google Scholar 

  • Lima, S. L. (2009). Predators and the breeding bird: Behavioral and reproductive flexibility under the risk of predation. Biological Reviews, 84, 485–513.

    Article  PubMed  Google Scholar 

  • Lima, S. L., & Bednekoff, P. A. (1999). Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. American Naturalist, 153, 649–659.

    Article  Google Scholar 

  • Lind, J., & Cresswell, W. (2005). Determining the fitness consequences of antipredation behavior. Behavioral Ecology, 16, 945–956.

    Article  Google Scholar 

  • Lothery, C. J., Thompson, C. F., Lawler, M. L., & Sakaluk, S. K. (2014). Food supplementation fails to reveal a trade-off between incubation and self-maintenance in female house wrens. PLoS ONE, 9(9), e106260. doi:10.1371/journal.pone.0106260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahr, K., Riegler, G., & Hoi, H. (2014). Parental risk management in relation to offspring defence: Bad news for kids. Proceedings of the Royal Society of London B, 282, 1–8.

    Article  Google Scholar 

  • Martin, T. E. (1993). Nest predation and nest sites. BioScience, 43, 523–532.

    Article  Google Scholar 

  • Martin, T. E., Scott, J., & Menge, C. (2000). Nest predation increases with parental activity: Separating nest site and parental activity effects. Proceedings of the Royal Society of London B, 267, 2287–2293.

    Article  CAS  Google Scholar 

  • Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P., & Ton, R. (2015). Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time. American Naturalist, 186, 223–236.

    Article  PubMed  Google Scholar 

  • McDonald, P. G., Wilson, D. R., & Evans, C. S. (2009). Nestling begging increases predation risk, regardless of spectral characteristics or avian mobbing. Behavioral Ecology, 20, 821–829.

    Article  Google Scholar 

  • Merino, S., & Potti, J. (1995). Pied flycatchers prefer to nest in clean nest boxes in an area with detrimental nest ectoparasites. Condor, 97, 828–831.

    Article  Google Scholar 

  • Mönkkönen, M., Forsman, J. T., Kananoja, T., & Ylönen, H. (2009). Indirect cues of nest predation risk and avian reproductive decisions. Biology Letters, 5, 176–178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morosinotto, C., Thomson, R. L., & Korpimäki, E. (2013). Plasticity in incubation behaviour under experimentally prolonged vulnerability to nest predation. Behaviour, 150, 1767–1786.

    Article  Google Scholar 

  • Murphy, M. T., Chutter, C. M., & Redmond, L. J. (2015). Quantification of avian parental behavior: What are the minimum necessary sample times? Journal of Field Ornithology, 86, 41–50.

    Article  Google Scholar 

  • Neill, A. J., & Harper, R. G. (1990). Red-bellied woodpecker predation on nestling house wrens. Condor, 92, 789.

    Article  Google Scholar 

  • Newhouse, M. J., Marra, P. P., & Johnson, L. S. (2008). Reproductive success of house wrens in suburban and rural landscapes. Wilson Journal of Ornithology, 120, 99–104.

    Article  Google Scholar 

  • Nolan, V., Jr. (1963). Reproductive success of birds in a deciduous scrub habitat. Ecology, 44, 305–313.

    Article  Google Scholar 

  • Nord, A., & Nilsson, J.-A. (2011). Incubation temperature affects growth and energy metabolism in blue tit nestlings. American Naturalist, 178, 639–651.

    Article  PubMed  Google Scholar 

  • Peluc, S. I., Sillett, T. S., Rotenberry, J. T., & Ghalambor, C. K. (2008). Adaptive phenotypic plasticity in an island songbird exposed to a novel predation risk. Behavioral Ecology, 19, 830–835.

    Article  Google Scholar 

  • Preisser, E. L., Bolnick, D. I., & Benard, M. F. (2005). Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology, 86, 501–509.

    Article  Google Scholar 

  • Pribil, S., & Picman, J. (1997). Parasitism of house wren nests by brown-headed cowbirds: Why is it so rare? Canadian Journal of Zoology, 75, 302–307.

    Article  Google Scholar 

  • Redondo, T., & Castro, F. (1992). The increase in risk of predation with begging activity in broods of magpies Pica pica. Ibis, 134, 180–187.

    Article  Google Scholar 

  • Reid, J. M., Monaghan, P., & Ruxton, G. D. (2000). Resource allocation between reproductive phases: The importance of thermal conditions in determining the cost of incubation. Proceedings of the Royal Society of London B, 267, 37–41.

    Article  CAS  Google Scholar 

  • Remeš, V., Matysioková, B., & Cockburn, A. (2012). Long-term and large-scale analyses of nest predation patterns in Australian songbirds and a global comparison of nest predation rates. Journal of Avian Biology, 43, 435–444.

    Article  Google Scholar 

  • Roper, J. J., & Goldstein, R. R. (1997). A test of the Skutch hypothesis: Does activity at nests increase nest predation risk? Journal of Avian Biology, 28, 111–116.

    Article  Google Scholar 

  • Scheiner, S. M. (2001). MANOVA: Multiple response variables and multispecies interactions. In S. M. Scheiner & J. Gurevitch (Eds.), Design and analysis of ecological experiments (2nd ed., pp. 99–115). Oxford: Oxford University Press.

    Google Scholar 

  • Scheuerlein, A., & Gwinner, E. (2006). Reduced nestling growth of East African stonechats Saxicola torquata axillaris in the presence of a predator. Ibis, 148, 468–476.

    Article  Google Scholar 

  • Scheuerlein, A., Van’t Hof, T. J., & Gwinner, E. (2001). Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaris). Proceedings of the Royal Society of London B, 268, 1575–1582.

    Article  CAS  Google Scholar 

  • Silverin, B. (1998). Behavioural and hormonal responses of the pied flycatcher to environmental stressors. Animal Behaviour, 55, 1411–1420.

    Article  CAS  PubMed  Google Scholar 

  • Stanback, M. T., Bartholomew, J. E., Bergner, L. M., Cline, E. L., Helms, P. I., McGovern, P. G., et al. (2013). House wrens alter nest architecture to compensate for cavity vulnerability. Wilson Journal of Ornithology, 125, 174–178.

    Article  Google Scholar 

  • Thompson, F. R., III. (2007). Factors affecting nest predation on forest songbirds in North America. Ibis, 149, 98–109.

    Article  Google Scholar 

  • Thompson, C. F., & Neill, A. J. (1991). House wrens do not prefer clean nestboxes. Animal Behaviour, 42, 1022–1024.

    Article  Google Scholar 

  • Thomson, R. L., Forsman, J. T., Mönkkönen, M., Hukkanen, M., Koivula, K., Rytkönen, S., et al. (2006a). Predation risk effects on fitness related measures in a resident bird. Oikos, 113, 325–333.

    Article  Google Scholar 

  • Thomson, R. L., Forsman, J. T., Sardà-Palomera, F., & Mönkkönen, M. (2006b). Fear factor: Prey habitat selection and its consequences in a predation risk landscape. Ecography, 29, 507–514.

    Article  Google Scholar 

  • Thomson, R. L., Tomás, G., Forsman, J. T., Broggi, J., & Mönkkönen, M. (2010). Predator proximity as a stressor in breeding flycatchers: Mass loss, stress protein induction, and elevated provisioning. Ecology, 91, 1832–1840.

    Article  PubMed  Google Scholar 

  • Tilgar, V., Moks, K., & Saag, P. (2011). Predator-induced stress changes parental feeding behavior in pied flycatchers. Behavioral Ecology, 22, 23–28.

    Article  Google Scholar 

  • Vleck, C. M. (1981). Energetic cost of incubation in the zebra finch. Condor, 83, 229–237.

    Article  Google Scholar 

  • West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20, 249–278.

    Article  Google Scholar 

  • Wheelwright, N. T., & Dorsey, F. B. (1991). Short-term and long-term consequences of predator avoidance by tree swallows (Tachycineta bicolor). Auk, 108, 719–723.

    Article  Google Scholar 

  • Zanette, L. Y., Smith, J. N. M., van Oort, H., & Clinchy, M. (2003). Synergistic effects of food and predators on annual reproductive success in song sparrows. Proceedings of the Royal Society of London B, 270, 799–803.

    Article  Google Scholar 

  • Zanette, L. Y., White, A. F., Allen, M. C., & Clinchy, M. (2011). Perceived predation risk reduces the number of offspring songbirds produce per year. Science, 334, 1398–1401.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the 2014 and 2015 Wren Crews for field support, and the ParkLands Foundation (Merwin Nature Preserve) for use of their property. We also thank E. Keith Bowers for statistical and graphics help, Victoria Borowicz and Angelo Capparella for advice on the study design, and Jim Dunham for assistance with nestbox construction. Research activities were performed in accordance with the Illinois State University Institutional Animal Care and Use Committee (Protocol 04-2013) and United States Geological Survey banding permit 09211. This work was supported by grants from the National Institutes of Health (Grant R15HD076308-01) to S.K.S. and C.F.T., the Beta Lambda Chapter of the Phi Sigma Biological Honor Society to E.E.D., and Illinois State University (Faculty Research Award to S.K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Thompson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standards

All research activities complied with current laws of the United States of America, and were performed in accordance with Illinois State University Institutional Animal Care and Use Committee permit 04-2013 and U. S. Geological Survey banding permit 09211.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorset, E.E., Sakaluk, S.K. & Thompson, C.F. Behavioral Plasticity in Response to Perceived Predation Risk in Breeding House Wrens. Evol Biol 44, 227–239 (2017). https://doi.org/10.1007/s11692-016-9402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-016-9402-7

Keywords

Navigation