Skip to main content
Log in

Variation in spatial scale of competing polydomous twig-nesting ants in coffee agroecosystems

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Arboreal ants are both highly diverse and ecologically dominant in the tropics. This ecologically important group is particularly useful in ongoing efforts to understand processes that regulate species diversity and coexistence. Our study addresses how polydomy can influence patterns of nest occupation in competing arboreal ants. We examined the spatial structure of nest occupation (nest distance, abundance and density) in three polydomous co-occurring twig-nesting ant species (Pseudomyrmex simplex, P. ejectus and P. PSW-53) by mapping twigs occupied by ants from each species within plots in our study site. We then used two colony structure estimators (intraspecific aggression and cuticular hydrocarbon variation) to determine the relative degree of polydomy for each species. All work was conducted in coffee agroforests in Chiapas, Mexico. Our results revealed that the two species with highest abundance and nest density were also highly polydomous, where both species had either single or multiple non-aggressive colonies occupying nests on a large spatial scale (greater than the hectare level). Our results also indicate that the species with the lowest abundance and density is less polydomous, occupying several overlapping and territorial colonies at the hectare level in which multiple colonies never co-occur on the same host plant. These results contribute evidence that successful coexistence and highly polydomous colony structure may allow ants, through reduced intraspecific aggression, to successfully occupy more nests more densely than ant species that have multiple territorial colonies. Furthermore our study highlights the importance of considering intraspecific interactions when examining community assembly of ants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AntWeb (2015) Available at http://www.antweb.org/ (accessed 10 October 2015)

  • Bluthgen N, Stork NE (2007) Ant mosaics in a tropical rainforest in Australia and elsewhere: a critical review. Austral Ecol 32:93–104

    Article  Google Scholar 

  • Bluthgen N, Verhaagh M, Goitia W et al (2000) How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:229–240. doi:10.1007/s004420000449

    Article  CAS  PubMed  Google Scholar 

  • Blüthgen N, Stork NE, Fiedler K (2004) Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos 106:344–358

    Article  Google Scholar 

  • Buczkowski G (2011) Colony spatial structure in polydomous ants: complimentary approaches reveal different patterns. Insectes Soc 59:241–250. doi:10.1007/s00040-011-0211-9

    Article  Google Scholar 

  • Crozier RH, Dix MW (1979) Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav Ecol Sociobiol 4:217–224. doi:10.1007/BF00297645

    Article  Google Scholar 

  • Davidson D (1997) The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol J Linn Soc 61:153–181. doi:10.1006/bijl.1996.0128

    Article  Google Scholar 

  • Davidson DW, Cook SC et al (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–973. doi:10.1126/science.1082074

    Article  CAS  PubMed  Google Scholar 

  • De Vega C, Herrera CM, Dötterl S (2014) Floral volatiles play a key role in specialized ant pollination. Perspect Plant Ecol Evol Syst 16:32–42. doi:10.1016/j.ppees.2013.11.002

    Article  Google Scholar 

  • Debout G, Schatz B, Elias M, Mckey D (2007) Polydomy in ants: what we know, what we think we know, and what remains to be done. J Linn Soc 90:319–348

    Article  Google Scholar 

  • Dejean A, Corbara B, Orivel J, Leponce M (2007) Rainforest canopy ants: the implications of territoriality and predatory behavior. Funct Ecosyst Communities 1:105–120

    Google Scholar 

  • Dejean A, Djiéto-Lordon C, Céréghino R, Leponce M (2008) Ontogenetic succession and the ant mosaic: an empirical approach using pioneer trees. Basic Appl Ecol 9:316–323. doi:10.1016/j.baae.2007.03.001

    Article  Google Scholar 

  • Dejean A, Ryder S, Bolton B et al (2015) How territoriality and host-tree taxa determine the structure of ant mosaics. Sci Nat. doi:10.1007/s00114-015-1282-7

    Google Scholar 

  • Feldhaar H, Fiala B, Gadau J (2005) A shift in colony founding behaviour in the obligate plant-ant Crematogaster (Decacrema) morphospecies 2. Insectes Soc 52:222–230. doi:10.1007/s00040-004-0797-2

    Article  Google Scholar 

  • Foitzik S, Sturm H, Pusch K et al (2007) Nestmate recognition and intraspecific chemical and genetic variation in Temnothorax ants. Anim Behav 73:999–1007. doi:10.1016/j.anbehav.2006.07.017

    Article  Google Scholar 

  • Heller NE, Ingram KK, Gordon DM (2008) Nest connectivity and colony structure in unicolonial Argentine ants. Insectes Soc 55:397–403. doi:10.1007/s00040-008-1019-0

    Article  Google Scholar 

  • Helms KR, Helms Cahan S (2012) Large-scale regional variation in cooperation and conflict among queens of the desert ant Messor pergandei. Anim Behav 84:499–507. doi:10.1016/j.anbehav.2012.05.019

    Article  Google Scholar 

  • Herbers JM, DeHeer CJ, Foitzik S (2001) Conflict over sex allocation drives conflict over reproductive allocation in perennial social insect colonies. Am Nat 158:178–192. doi:10.1086/321312

    Article  CAS  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The Ants. Harvard University, Cambridge

    Book  Google Scholar 

  • Holway D (1998) Loss of Intraspecific Aggression in the Success of a Widespread Invasive Social Insect. Science 282:949–952. doi:10.1126/science.282.5390.949 (80-)

    Article  CAS  PubMed  Google Scholar 

  • Holway D, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233. doi:10.1146/annurev.ecolsys.33.010802.150444

    Article  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393. doi:10.1146/annurev.ento.50.071803.130359

    Article  CAS  PubMed  Google Scholar 

  • Izzo TJ, Bruna EM, Vasconcelos HL, Inouye BD (2009) Cooperative colony founding alters the outcome of interspecific competition between Amazonian plant-ants. Insectes Soc 56:341–345. doi:10.1007/s00040-009-0029-x

    Article  Google Scholar 

  • Jackson D (1984) Ant distribution patterns in a Cameroonian cocoa plantation: investigation of the ant mosaic hypothesis. Oecologia 62:318–324. doi:10.1007/BF00384263

    Article  Google Scholar 

  • Jiménez-Soto E, Philpott SM (2015) Size matters: nest colonization patterns for twig-nesting ants. Ecol Evol 5:3288–3298. doi:10.1002/ece3.1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Katritzky AR, Chen K, Maran U, Carlson D (2000) QSPR correlation and predictions of GC retention indexes for methyl-branched hydrocarbons produced by insects. Anal Chem 72:101–109. doi:10.1021/ac990800w

    Article  CAS  PubMed  Google Scholar 

  • Kautz S, Ballhorn DJ, Kroiss J et al (2012) Host plant use by competing acacia-ants: mutualists monopolize while parasites share hosts. PLoS One 7:1–10. doi:10.1371/journal.pone.0037691

    Article  Google Scholar 

  • Klein R (1987) Colony structures of three species of Pseudomyrmex (Hymenoptera: Formicidae: Pseudomyrmecinae) in Florida. In: Chemistry and biology of social insects. Velag J. Peperny, Munich, p 107–108

  • Krasnec MO, Breed MD (2013) Colony-specific cuticular hydrocarbon profile in Formica argentea ants. J Chem Ecol 39:59–66. doi:10.1007/s10886-012-0227-2

    Article  CAS  PubMed  Google Scholar 

  • Lenoir A, Fresneau D, Errard C, Hefetz A (1999) Individuality and colonial identity in ants: the emergence of the social representation concept. In: Detrain C, Deneubourg J, Pasteels J (eds) Information Processing in Social Insects. Birkhauser Verlag Ag, Basel, pp 219–237

    Chapter  Google Scholar 

  • Lenoir A, Hefetz A, Simon T, Soroker V (2001) Comparative dynamics of gestalt odour formation in two ant species Camponotus fellah and Aphaenogaster senilis (Hymenoptera: Formicidae). Physiol Entomol 26:275–283

    Article  Google Scholar 

  • Liere H, Larsen A (2010) Cascading trait-mediation: disruption of a trait-mediated mutualism by parasite-induced behavioral modification. Oikos 119:1394–1400. doi:10.1111/j.1600-0706.2010.17985.x

    Article  Google Scholar 

  • Livingston GF, Jackson D (2014) Spatial clustering of twig nesting ants corresponds with metacommunity assembly processes. Ecología austral 24:343–349

    Google Scholar 

  • Livingston GF, Philpott SM (2010) A metacommmunity approach to co-occurrence patterns and the core-satellite hypothesis in a community of tropical arboreal ants. Ecol Res 25:1129–1140. doi:10.1007/s11284-010-0738-7

    Article  Google Scholar 

  • Majer JD (1972) The ant mosaic in Ghana cocoa farms. Bull Entomol Res 62:151. doi:10.1017/S0007485300047593

    Article  Google Scholar 

  • Majer JD, Delabie JHC, Smith MRB (1994) Arboreal ant community patterns in Brazilian cocoa farms. Biotropica 26:73–83. doi:10.2307/2389112

    Article  Google Scholar 

  • Mathews CR, Bottrell DG, Brown MW (2011) Interactions between extrafloral nectaries, ants (Hymenoptera: Formicidae), and other natural enemies affect biological control of Grapholita molesta (Lepidoptera: Tortricidae) on peach (Rosales: Rosaceae). Environ Entomol 40:42–51. doi:10.1603/EN10161

    Article  PubMed  Google Scholar 

  • Overson R, Gadau J, Clark RM et al (2014) Behavioral transitions with the evolution of cooperative nest founding by harvester ant queens. Behav Ecol Sociobiol 68:21–30. doi:10.1007/s00265-013-1618-2

    Article  Google Scholar 

  • Philpott SM, Armbrecht I (2006) Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol Entomol 31:369–377

    Article  Google Scholar 

  • Philpott Stacy M, Foster PF (2005) Nest-site limitation in coffee agroecosystems: artificial nests maintain diversity of arboreal ants. Ecol Appl 15:1478–1485

    Article  Google Scholar 

  • Powell S, Costa AN, Lopes CT, Vasconcelos HL (2011) Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. J Anim Ecol 80:352–360. doi:10.1111/j.1365-2656.2010.01779.x

    Article  PubMed  Google Scholar 

  • R Development Core Team (2013) A language and environment for statistical computing. R Development Core Team, Vienna, Austria. Available at http://www.R-project.org

  • Ribas CR, Schoereder JH (2002) Are all ant mosaics caused by competition? Oecologia 131:606–611. doi: 10.1007/s00442-002-0912-x

    Article  Google Scholar 

  • Room PM (1971) The relative distributions of ant species in Ghana’s Cocoa farms. J Anim Ecol 40:735–751

    Article  Google Scholar 

  • Sanders NJ, Gotelli NJ, Heller NE, Gordon DM (2003) Community disassembly by an invasive species. Proc Natl Acad Sci USA 100:2474–2477. doi:10.1073/pnas.0437913100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders NJ, Crutsinger GM, Dunn RR et al (2007) An ant mosaic revisited: dominant ant species disassemble arboreal ant communities but co-occur randomly. Biotropica 39:422–427. doi:10.1111/j.1744-7429.2007.00263.x

    Article  Google Scholar 

  • Suarez A, Tsutsui N, Holway D, Case T (1999) Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biol Invasions 1:43–53. doi:10.1023/A:1010038413690

    Article  Google Scholar 

  • Suarez AV, Holway D, Liang D et al (2002) Spatiotemporal patterns of intraspecific aggression in the invasive Argentine ant. Anim Behav 64:697–708. doi:10.1006/anbe.2002.4011

    Article  Google Scholar 

  • Taylor B (1977) The ant mosaic on cocoa and other tree crops in Western Nigeria. Ecol Entomol 2:245–255. doi:10.1111/j.1365-2311.1977.tb00887.x

    Article  Google Scholar 

  • Torres CW, Brandt M, Tsutsui ND (2007) The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insectes Soc 54:363–373. doi:10.1007/s00040-007-0954-5

    Article  Google Scholar 

  • Tsutsui ND (2004) Scents of self: the expression component of self/non- self recognition systems. Ann Zool Fennici 41:713–727

    Google Scholar 

  • Tsutsui ND, Suarez AV, Grosberg RK (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci USA 100:1078–1083. doi:10.1073/pnas.0234412100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Meer R, Morel L (1998) Nestmate Recognition in Ants. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees and termites. Westview Press, Boulder, CO, p 79–103

  • Vandermeer J, Perfecto I, Philpott SM (2008) Clusters of ant colonies and robust criticality in a tropical agroecosystem. Nature 451:457–459. doi:10.1038/nature06477

    Article  CAS  PubMed  Google Scholar 

  • Vandermeer J, Perfecto I, Philpott S (2010) Ecological complexity and pest control in organic coffee production: uncovering an autonomous ecosystem service. Bioscience 60:527–537. doi:10.1525/bio.2010.60.7.8

    Article  Google Scholar 

  • Vasconcelos HL (1993) Ant colonization of Maieta guianensis seedlings, an Amazon ant-plant. Oecologia 95:439–443. doi:10.1007/S00442-004-V

    Article  Google Scholar 

  • Ward PS (1985) The Nearctic species of the genus Pseudomyrmex (Hymenoptera: Formicidae). Quaest Entomol 21:209–246

    Google Scholar 

  • Yitbarek S, Philpott SM. Dominance hierarchies drive local twig-nesting ant abundance patterns in a tropical agroecosystem (Unpublished data)

Download references

Acknowledgments

G. Lopez Bautista, G. Domíngez-Martínez, and F. Sánchez-López assisted with field collection and sample processing. We thank Finca Irlanda for allowing us to conduct research on the farm. We thank SEMARNAT (Secretaria de Medio Ambiente y Recursos Naturales) for permission to collect and export samples and J. Rojas and E. Chamé Vasquez for facilitating the process of acquiring permits. N. Tsutsui provided helpful comments on the manuscript. Funding was provided by a Packard Foundation Grant to SRR, National Science Foundation DEB-1262086 to SMP, and National Science Foundation GRFP DGE 1106400 and National Institutes of Health Award Number K12GM000708 to KAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Mathis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathis, K.A., Philpott, S.M. & Ramirez, S.R. Variation in spatial scale of competing polydomous twig-nesting ants in coffee agroecosystems. Insect. Soc. 63, 447–456 (2016). https://doi.org/10.1007/s00040-016-0489-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-016-0489-8

Keywords

Navigation