Skip to main content

Advertisement

Log in

Bridged Analogues for p53-Dependent Cancer Therapy Obtained by S-Alkylation

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

A small library of anticancer, cell-permeating, stapled peptides based on potent dual-specific antagonist of p53–MDM2/MDMX interactions, PMI-N8A, was synthesized, characterized and screened for anticancer activity against human colorectal cancer cell line, HCT-116. Employed synthetic modifications included: S-alkylation-based stapling, point mutations increasing hydrophobicity in key residues as well as improvement of cell-permeability by introduction of polycationic sequence(s) that were woven into the sequence of parental peptide. Selected analogue, ArB14Co, was also tested in vivo and exhibited potent anticancer bioactivity at the low dose (3.0 mg/kg). Collectively, our findings suggest that application of stapling in combination with rational design of polycationic short analogues may be a suitable approach in the development of physiologically active p53–MDM2/MDMX peptide inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Almeida AM, Li R, Gellman SH (2012) Parallel beta-sheet secondary structure is stabilized and terminated by interstrand disulfide cross-linking. J Am Chem Soc 134:75–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angelini A, Cendron L, Chen S et al (2012a) Bicyclic peptide inhibitor reveals large contact interface with a protease target. ACS Chem Biol 7:817–821

    Article  CAS  PubMed  Google Scholar 

  • Angelini A, Diderich P, Morales-Sanfrutos J et al (2012b) Chemical macrocyclization of peptides fused to antibody Fc fragments. Bioconjug Chem 23:1856–1863

    Article  CAS  PubMed  Google Scholar 

  • Angelini A, Morales-Sanfrutos J, Diderich P, Chen S, Heinis C (2012c) Bicyclization and tethering to albumin yields long-acting peptide antagonists. J Med Chem 55:10187–10197

    Article  CAS  PubMed  Google Scholar 

  • Baeriswyl V, Heinis C (2013a) Phage selection of cyclic peptide antagonists with increased stability toward intestinal proteases. Protein Eng Des Sel 26:81–89

    Article  CAS  PubMed  Google Scholar 

  • Baeriswyl V, Heinis C (2013b) Polycyclic peptide therapeutics. Chem Med Chem 8:377–384

    Article  CAS  PubMed  Google Scholar 

  • Baeriswyl V, Rapley H, Pollaro L et al (2012) Bicyclic peptides with optimized ring size inhibit human plasma kallikrein and its orthologues while sparing paralogous proteases. Chem Med Chem 7:1173–1176

    Article  CAS  PubMed  Google Scholar 

  • Baeriswyl V, Calzavarini S, Gerschheimer C, Diderich P, Angelillo-Scherrer A, Heinis C (2013) Development of a selective peptide macrocycle inhibitor of coagulation factor XII toward the generation of a safe antithrombotic therapy. J Med Chem 56:3742–3746

    Article  CAS  PubMed  Google Scholar 

  • Bautista AD, Appelbaum JS, Craig CJ, Michel J, Schepartz A (2010) Bridged beta(3)-peptide inhibitors of p53-hDM2 complexation: correlation between affinity and cell permeability. J Am Chem Soc 132:2904–2906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bellotto S, Chen S, Rentero RI, Wegner HA, Heinis C (2014) Phage selection of photoswitchable peptide ligands. J Am Chem Soc 136:5880–5883

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  CAS  PubMed  Google Scholar 

  • Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129:2456–2457

    Article  CAS  PubMed  Google Scholar 

  • Bernal F, Wade M, Godes M et al (2010) A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 18:411–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bird GH, Madani N, Perry AF et al (2010) Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci USA 107:14093–14098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blackwell HE, Grubbs RH (1998) Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew Chem Int Ed Engl 37:3281–3284

    Article  CAS  Google Scholar 

  • Blackwell HE, Sadowsky JD, Howard RJ et al (2001) Ring-closing metathesis of olefinic peptides: design, synthesis, and structural characterization of macrocyclic helical peptides. J Org Chem 66:5291–5302

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Mol Cell 21:307–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    CAS  PubMed  Google Scholar 

  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP (2009) Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9:862–873

    Article  CAS  PubMed  Google Scholar 

  • Brown CJ, Quah ST, Jong J et al (2013) Stapled peptides with improved potency and specificity that activate p53. ACS Chem Biol 8:506–512

    Article  CAS  PubMed  Google Scholar 

  • Brunel FM, Dawson PE (2005) Synthesis of constrained helical peptides by thioether ligation: application to analogs of gp41. Chem Commun 20:2552–2554

    Article  CAS  Google Scholar 

  • Byrne MP, Stites WE (1995) Chemically crosslinked protein dimers: stability and denaturation effects. Protein Sci 4:2545–2558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabezas E, Satterthwait AC (1999) The hydrogen bond mimic approach: solid-phase synthesis of a peptide stabilized as an a-helix with a hydrazone link. J Am Chem Soc 121:3862–3875

    Article  CAS  Google Scholar 

  • Cardoso RM, Brunel FM, Ferguson S et al (2007) Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. J Mol Biol 365:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Chang YS, Graves B, Guerlavais V et al (2013) Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci USA 110:E3445–E3454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Morales-Sanfrutos J, Angelini A, Cutting B, Heinis C (2012) Structurally diverse cyclisation linkers impose different backbone conformations in bicyclic peptides. ChemBioChem 13:1032–1038

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Rentero Rebollo I, Buth SA et al (2013) Bicyclic peptide ligands pulled out of cysteine-rich peptide libraries. J Am Chem Soc 135:6562–6569

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Bertoldo D, Angelini A, Pojer F, Heinis C (2014a) Peptide ligands stabilized by small molecules. Angew Chem Int Ed Engl 53:1602–1606

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Gopalakrishnan R, Schaer T et al (2014b) Dithiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides. Nat Chem 6:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Cheok CF, Verma CS, Baselga J, Lane DP (2011) Translating p53 into the clinic. Nat Rev Clin Oncol 8:25–37

    Article  CAS  PubMed  Google Scholar 

  • Chua K, Fung E, Micewicz ED, Ganz T, Nemeth E, Ruchala P (2015) Small cyclic agonists of iron regulatory hormone hepcidin. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2015.03.012

    PubMed Central  Google Scholar 

  • Danovi D, Meulmeester E, Pasini D et al (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24:5835–5843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Araujo AD, Hoang HN, Kok WM et al (2014) Comparative alpha-helicity of cyclic pentapeptides in water. Angew Chem Int Ed Engl 53:6965–6969

    Article  PubMed  CAS  Google Scholar 

  • de Graaf P, Little NA, Ramos YF, Meulmeester E, Letteboer SJ, Jochemsen AG (2003) Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J Biol Chem 278:38315–38324

    Article  PubMed  CAS  Google Scholar 

  • de Souza-Pinto NC, Harris CC, Bohr VA (2004) p53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria. Oncogene 23:6559–6568

    Article  PubMed  CAS  Google Scholar 

  • Duran FJ, Ghini AA, Coirini H, Burton G (2006) Synthesis of 6-thia analogs of the natural neurosteroid allopregnanolone. Tetrahedron 62:4762–4768

    Article  CAS  Google Scholar 

  • Esteller M, Cordon-Cardo C, Corn PG et al (2001) p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res 61:2816–2821

    CAS  PubMed  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto K, Kajino M, Inouye M (2008) Development of a series of cross-linking agents that effectively stabilize alpha-helical structures in various short peptides. Chem Eur J 14:857–863

    Article  CAS  PubMed  Google Scholar 

  • Futaki S, Nakase I, Suzuki T, Youjun Z, Sugiura Y (2002) Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides. Biochemistry 41:7925–7930

    Article  CAS  PubMed  Google Scholar 

  • Galande AK, Bramlett KS, Burris TP, Wittliff JL, Spatola AF (2004) Thioether side chain cyclization for helical peptide formation: inhibitors of estrogen receptor-coactivator interactions. J Pept Res 63:297–302

    Article  CAS  PubMed  Google Scholar 

  • Garbe JC, Holst CR, Bassett E, Tlsty T, Stampfer MR (2007) Inactivation of p53 function in cultured human mammary epithelial cells turns the telomere-length dependent senescence barrier from agonescence into crisis. Cell Cycle 6:1927–1936

    Article  CAS  PubMed  Google Scholar 

  • Geistlinger TR, Guy RK (2001) An inhibitor of the interaction of thyroid hormone receptor beta and glucocorticoid interacting protein 1. J Am Chem Soc 123:1525–1526

    Article  CAS  PubMed  Google Scholar 

  • Geistlinger TR, Guy RK (2003) Novel selective inhibitors of the interaction of individual nuclear hormone receptors with a mutually shared steroid receptor coactivator 2. J Am Chem Soc 125:6852–6853

    Article  CAS  PubMed  Google Scholar 

  • Ghadiri MR, Choi C (1990) Secondary structure nucleation in peptides. Transition metal ion stabilized alpha-helices. J Am Chem Soc 112:1630–1632

    Article  CAS  Google Scholar 

  • Green DR, Chipuk JE (2006) p53 and metabolism: inside the TIGAR. Cell 126:30–32

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Streu K, Krilov G, Mohanty U (2014) Probing the origin of structural stability of single and double stapled p53 peptide analogs bound to MDM2. Chem Biol Drug Des 83:631–642

    Article  CAS  PubMed  Google Scholar 

  • Haney CM, Loch MT, Horne WS (2011) Promoting peptide alpha-helix formation with dynamic covalent oxime side-chain cross-links. Chem Commun 47:10915–10917

    Article  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  CAS  PubMed  Google Scholar 

  • Heinis C, Rutherford T, Freund S, Winter G (2009) Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol 5:502–507

    Article  CAS  PubMed  Google Scholar 

  • Helton ES, Chen X (2007) p53 modulation of the DNA damage response. J Cell Biochem 100:883–896

    Article  CAS  PubMed  Google Scholar 

  • Holland-Nell K, Meldal M (2011) Maintaining biological activity by using triazoles as disulfide bond mimetics. Angew Chem Int Ed Engl 50:5204–5206

    Article  CAS  PubMed  Google Scholar 

  • Houston ME Jr, Gannon CL, Kay CM, Hodges RS (1995) Lactam bridge stabilization of alpha-helical peptides: ring size, orientation and positional effects. J Pept Sci 1:274–282

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Gilkes DM, Chen J (2007) Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res 67:8810–8817

    Article  CAS  PubMed  Google Scholar 

  • Ingale S, Dawson PE (2011) On resin side-chain cyclization of complex peptides using CuAAC. Org Lett 13:2822–2825

    Article  CAS  PubMed  Google Scholar 

  • Jackson DY, King DS, Chmielewski J, Singh S, Schultz PG (1991) General approach to the synthesis of short a-helical peptides. J Am Chem Soc 113:9391–9392

    Article  CAS  Google Scholar 

  • Jo H, Meinhardt N, Wu Y et al (2012) Development of alpha-helical calpain probes by mimicking a natural protein-protein interaction. J Am Chem Soc 134:17704–17713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS et al (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto SA, Coleska A, Ran X, Yi H, Yang CY, Wang S (2012) Design of triazole-stapled BCL9 alpha-helical peptides to target the beta-catenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction. J Med Chem 55:1137–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kemp DS, McNamara M (1985) Conformationally restricted cyclic nonapeptides derived from l-cysteine and LL-3-Amino-2-piperidone-6-carboxylic acid (LL-Acp), a potent b-turn-inducing dipeptide analogue. J Org Chem 50:5834–5838

    Article  CAS  Google Scholar 

  • Khoo KH, Verma CS, Lane DP (2014) Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 13:217–236

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Verdine GL (2009) Stereochemical effects of all-hydrocarbon tethers in i, i + 4 stapled peptides. Bioorg Med Chem Lett 19:2533–2536

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Grossmann TN, Verdine GL (2011) Synthesis of all-hydrocarbon stapled alpha-helical peptides by ring-closing olefin metathesis. Nat Protoc 6:761–771

    Article  CAS  PubMed  Google Scholar 

  • Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89:7491–7495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  CAS  PubMed  Google Scholar 

  • Lau YH, de Andrade P, McKenzie GJ, Venkitaraman AR, Spring DR (2014a) Linear aliphatic dialkynes as alternative linkers for double-click stapling of p53-derived peptides. ChemBioChem 15:2680–2683

    Article  CAS  PubMed  Google Scholar 

  • Lau YH, de Andrade P, Skold N et al (2014b) Investigating peptide sequence variations for ‘double-click’ stapled p53 peptides. Org Biomol Chem 12:4074–4077

    Article  CAS  PubMed  Google Scholar 

  • Lau YH, de Andrade P, Quah ST et al (2014c) Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chem Sci 5:1804–1809

    Article  CAS  Google Scholar 

  • Lau YH, de Andrade P, Wu Y, Spring DR (2015a) Peptide stapling techniques based on different macrocyclisation chemistries. Chem Soc Rev 44:91–102

    Article  CAS  PubMed  Google Scholar 

  • Lau YH, Wu Y, de Andrade P, Galloway WR, Spring DR (2015b) A two-component ‘double-click’ approach to peptide stapling. Nat Protoc 10:585–594

    Article  CAS  PubMed  Google Scholar 

  • Laurie NA, Donovan SL, Shih CS et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66

    Article  CAS  PubMed  Google Scholar 

  • Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950

    Article  CAS  PubMed  Google Scholar 

  • Leduc AM, Trent JO, Wittliff JL et al (2003) Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions. Proc Natl Acad Sci USA 100:11273–11278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Q, Lozano G (2013) Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy. Clin Cancer Res 19:34–41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li C, Pazgier M, Liu M, Lu WY, Lu W (2009) Apamin as a template for structure-based rational design of potent peptide activators of p53. Angew Chem Int Ed Engl 48:8712–8715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li C, Pazgier M, Li C et al (2010a) Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. J Mol Biol 398:200–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li C, Pazgier M, Li J et al (2010b) Limitations of peptide retro-inverso isomerization in molecular mimicry. J Biol Chem 285:19572–19581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M (2003) HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 100:12009–12014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindman S, Lindeberg G, Gogoll A, Nyberg F, Karlen A, Hallberg A (2001) Synthesis, receptor binding affinities and conformational properties of cyclic methylenedithioether analogues of angiotensin II. Bioorg Med Chem 9:763–772

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Li C, Pazgier M et al (2010a) D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc Natl Acad Sci USA 107:14321–14326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu M, Pazgier M, Li C, Yuan W, Li C, Lu W (2010b) A left-handed solution to peptide inhibition of the p53-MDM2 interaction. Angew Chem Int Ed Engl 49:3649–3652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long YQ, Huang SX, Zawahir Z et al (2013) Design of cell-permeable stapled peptides as HIV-1 integrase inhibitors. J Med Chem 56:5601–5612

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13:77–83

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    Article  CAS  PubMed  Google Scholar 

  • Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q (2011) Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett 21:1472–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madhumalar A, Lee HJ, Brown CJ, Lane D, Verma C (2009) Design of a novel MDM2 binding peptide based on the p53 family. Cell Cycle 8:2828–2836

    Article  PubMed  Google Scholar 

  • Marine JC (2011) MDM2 and MDMX in cancer and development. Curr Top Dev Biol 94:45–75

    Article  CAS  PubMed  Google Scholar 

  • Marine JC, Dyer MA, Jochemsen AG (2007) MDMX: from bench to bedside. J Cell Sci 120:371–378

    Article  CAS  PubMed  Google Scholar 

  • Matoba S, Kang JG, Patino WD et al (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  CAS  PubMed  Google Scholar 

  • Menendez D, Inga A, Jordan JJ, Resnick MA (2007) Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson. Oncogene 26:2191–2201

    Article  CAS  PubMed  Google Scholar 

  • Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9:724–737

    Article  CAS  PubMed  Google Scholar 

  • Micewicz ED, Luong HT, Jung CL, Waring AJ, McBride WH, Ruchala P (2014) Novel dimeric Smac analogs as prospective anticancer agents. Bioorg Med Chem Lett 24:1452–1457

    Article  PubMed  CAS  Google Scholar 

  • Migliorini D, Danovi D, Colombo E, Carbone R, Pelicci PG, Marine JC (2002a) Hdmx recruitment into the nucleus by Hdm2 is essential for its ability to regulate p53 stability and transactivation. J Biol Chem 277:7318–7323

    Article  CAS  PubMed  Google Scholar 

  • Migliorini D, Lazzerini DE, Danovi D et al (2002b) Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 22:5527–5538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molchadsky A, Shats I, Goldfinger N et al (2008) p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One 3:e3707

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Muppidi A, Li X, Chen J, Lin Q (2011a) Conjugation of spermine enhances cellular uptake of the stapled peptide-based inhibitors of p53-Mdm2 interaction. Bioorg Med Chem Lett 21:7412–7415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muppidi A, Wang Z, Li X, Chen J, Lin Q (2011b) Achieving cell penetration with distance-matching cysteine cross-linkers: a facile route to cell-permeable peptide dual inhibitors of Mdm2/Mdmx. Chem Commun 47:9396–9398

    Article  CAS  Google Scholar 

  • Muppidi A, Doi K, Edwardraja S et al (2012) Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors. J Am Chem Soc 134:14734–14737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murray-Zmijewski F, Slee EA, Lu X (2008) A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol 9:702–712

    Article  CAS  PubMed  Google Scholar 

  • Osapay G, Taylor JW (1992) Multicyclic polypeptide model compounds. 2. Synthesis and conformational properties of a highly.alpha.-helical uncosapeptide constrained by three side-chain to side-chain lactam bridges. J Am Chem Soc 114:6966–6973

    Article  CAS  Google Scholar 

  • Pal S, Datta K, Mukhopadhyay D (2001) Central role of p53 on regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in mammary carcinoma. Cancer Res 61:6952–6957

    CAS  PubMed  Google Scholar 

  • Pan Y, Chen J (2003) MDM2 promotes ubiquitination and degradation of MDMX. Mol Cell Biol 23:5113–5121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pazgier M, Liu M, Zou G et al (2009) Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc Natl Acad Sci USA 106:4665–4670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phelan JC, Skelton NJ, Braisted AC, McDowell RS (1997) A general method for constraining short peptides to an a-helical conformation. J Am Chem Soc 119:455–460

    Article  CAS  Google Scholar 

  • Pollaro L, Raghunathan S, Morales-Sanfrutos J, Angelini A, Kontos S, Heinis C (2014) Bicyclic peptides conjugated to an albumin-binding tag diffuse efficiently into solid tumors. Mol Cancer Ther 14:151–161

    Article  PubMed  CAS  Google Scholar 

  • Popowicz GM, Czarna A, Holak TA (2008) Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 7:2441–2443

    Article  CAS  PubMed  Google Scholar 

  • Qin Q, Baudry M, Liao G, Noniyev A, Galeano J, Bi X (2009) A novel function for p53: regulation of growth cone motility through interaction with Rho kinase. J Neurosci 29:5183–5192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rentero-Rebollo I, Sabisz M, Baeriswyl V, Heinis C (2014) Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucleic Acids Res 42:e169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Riedinger C, McDonnell JM (2009) Inhibitors of MDM2 and MDMX: a structural perspective. Future Med Chem 1:1075–1094

    Article  CAS  PubMed  Google Scholar 

  • Riemenschneider MJ, Buschges R, Wolter M et al (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096

    CAS  PubMed  Google Scholar 

  • Roger L, Gadea G, Roux P (2006) Control of cell migration: a tumour suppressor function for p53? Biol Cell 98:141–152

    Article  CAS  PubMed  Google Scholar 

  • Ruan FQ, Chen YQ, Hopkins PB (1990) Metal ion-enhanced helicity in synthetic peptides containing unnatural, metal-ligating residues. J Am Chem Soc 112:9403–9404

    Article  CAS  Google Scholar 

  • Saha MN, Qiu L, Chang H (2013) Targeting p53 by small molecules in hematological malignancies. J Hematol Oncol 6:23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schafmeister CE, Po J, Verdine GL (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 122:5891–5892

    Article  CAS  Google Scholar 

  • Scrima M, Le Chevalier-Isaad A, Rovero P, Papini AM, Chorev M, D’Ursi AM (2010) CuI-catalyzed azide-alkyne intramolecular i-to-(i + 4) side-chain-to-side-chain cyclization promotes the formation of helix-like secondary structures. Eur J Org Chem 2010:446–457

    Article  CAS  Google Scholar 

  • Sengupta S, Harris CC (2005) p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6:44–55

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (2006) Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6:663–673

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10:94–99

    Article  CAS  PubMed  Google Scholar 

  • Simat TJ, Steinhart H (1998) Oxidation of free tryptophan and tryptophan residues in peptides and proteins. J Agric Food Chem 46:490–498

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Mogare D, Giridharagopalan RO, Gogiraju R, Pande G, Chattopadhyay S (2007) p53 target gene SMAR1 is dysregulated in breast cancer: its role in cancer cell migration and invasion. PLoS One 2:e660

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sommers JA, Sharma S, Doherty KM et al (2005) p53 modulates RPA-dependent and RPA-independent WRN helicase activity. Cancer Res 65:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Spokoyny AM, Zou Y, Ling JJ, Yu H, Lin YS, Pentelute BL (2013) A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling. J Am Chem Soc 135:5946–5949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460:529–533

    Article  CAS  PubMed  Google Scholar 

  • Szewczuk Z, Rebholz KL, Rich DH (1992) Synthesis and biological activity of new conformationally restricted analogues of pepstatin. Int J Pept Protein Res 40:233–242

    Article  CAS  PubMed  Google Scholar 

  • Taura M, Eguma A, Suico MA et al (2008) p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol Cell Biol 28:6557–6567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teodoro JG, Parker AE, Zhu X, Green MR (2006) p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313:968–971

    Article  CAS  PubMed  Google Scholar 

  • Timmerman P, Beld J, Puijk WC, Meloen RH (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. ChemBioChem 6:821–824

    Article  CAS  PubMed  Google Scholar 

  • Timmerman P, Puijk WC, Meloen RH (2007) Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS technology. J Mol Recognit 20:283–299

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Krummel KA, Lee CJ et al (2006) A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell 9:273–285

    Article  CAS  PubMed  Google Scholar 

  • Tovar C, Rosinski J, Filipovic Z et al (2006) Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103:1888–1893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH (2006) Outcomes of p53 activation–spoilt for choice. J Cell Sci 119:5015–5020

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9:691–700

    Article  CAS  PubMed  Google Scholar 

  • Wade M, Wahl GM (2009) Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res 7:1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walensky LD, Kung AL, Escher I et al (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Zhao Y, Bernard D, Aguilar A, Kumar S (2012) Targeting the MDM2-p53 protein-protein interaction for new cancer therapeutics. In: Wendt MD (ed) Protein-protein interactions, vol 8. Springer, Berlin-Heidelberg, pp 57–80

    Chapter  Google Scholar 

  • Wender PA, Galliher WC, Goun EA, Jones LR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkinson RA, Evans JR, Jacobs JM et al (2007) Peptides selected from a phage display library with an HIV-neutralizing antibody elicit antibodies to HIV gp120 in rabbits, but not to the same epitope. AIDS Res Hum Retrovir 23:1416–1427

    Article  CAS  PubMed  Google Scholar 

  • Wlostowski M, Czarnocka S, Maciejewski P (2010) Efficient S-alkylation of cysteine in the presence of 1,1,3,3-tetramethylguanidine. Tetrahedron Lett 51:5977–5979

    Article  CAS  Google Scholar 

  • Woolley GA (2005) Photocontrolling peptide a helices. Acc Chem Res 38:486–493

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801

    Article  CAS  PubMed  Google Scholar 

  • Zhan C, Zhao L, Wei X et al (2012) An ultrahigh affinity d-peptide antagonist Of MDM2. J Med Chem 55:6237–6241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Yu D, Hu M et al (2000) Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res 60:3655–3661

    CAS  PubMed  Google Scholar 

  • Zhang F, Sadovski O, Xin SJ, Woolley GA (2007) Stabilization of folded peptide and protein structures via distance matching with a long, rigid cross-linker. J Am Chem Soc 129:14154–14155

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Sadovski O, Woolley GA (2008) Synthesis and characterization of a long, rigid photoswitchable cross-linker for promoting peptide and protein conformational change. ChemBioChem 9:2147–2154

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Bernard D, Wang S (2013) Small molecule inhibitors of MDM2-p53 and MDMX-p53 interactions as new cancer therapeutics. Biodiscovery 4:1–15

    CAS  Google Scholar 

  • Zhigaltsev IV, Winters G, Srinivasulu M et al (2010) Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. J Control Release 144:332–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was partially supported by funds from the Adams and Burnham endowments provided by the Dean’s Office of the David Geffen School of Medicine at UCLA (PR) and the NIH/NIAID award 5U19AI067769 (EDM and WHM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Ruchala.

Ethics declarations

Conflict of interest

Authors declare that this article content has no conflict of interest.

Statement of Informed Consent

The article does not contain any studies in patients by any of the authors.

Statement of Human and Animal Rights

This article does not contain studies involving human subjects. All animal experiments were approved by the UCLA Animal Care and Use Committee and conformed to local and national guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micewicz, E.D., Sharma, S., Waring, A.J. et al. Bridged Analogues for p53-Dependent Cancer Therapy Obtained by S-Alkylation. Int J Pept Res Ther 22, 67–81 (2016). https://doi.org/10.1007/s10989-015-9487-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-015-9487-3

Keywords

Navigation