Skip to main content
Log in

Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Park, B. B. Das, F. Casagrande, Ye Tian, H. J. Nothnagel, M. Chu, H. Kiefer, K. Maier, A. A. de Angelis, F. M. Marassi, and S. J. Opella, Nature 491, 779 2012.

    Article  ADS  Google Scholar 

  2. P. J. E. Verdegem, P. H. M. Bovee-Geurts, W. J. de Grip, J. Lugtenburg, and H. J. M. de Groot, Biochemistry 38, 11316 1999.

    Article  Google Scholar 

  3. P. J. R. Spooner, J. M. Sharples, M. A. Verhoeven, J. Lugtenburg, C. Glaubitz, and A. Watts, Biochemistry 41, 7549 2002.

    Article  Google Scholar 

  4. X. Feng, P. J. E. Verdegem, M. Edén, D. Sandström, Y.K. Lee, P. H. M. Bovee-Geurts, W. J. de Grip, J. Lugtenburg, H. J. M. de Groot, and M. H. Levitt, J. Biomol. NMR 16, 1 2000.

    Article  Google Scholar 

  5. S. R. Kiihne, A. F. L. Creemers, W. J. de Grip, P. H. M. Bovee-Geurts, J. Lugtenburg, and H. J. M. de Groot, J. Am. Chem. Soc. 127, 5734 2005.

    Article  Google Scholar 

  6. A. B. Patel, E. Crocker, M. Eilers, A. Hirshfeld, M. Sheves, and S. O. Smith, Proc. Natl. Acad. Sci. USA 101, 10048 2004.

    Article  ADS  Google Scholar 

  7. S. Ahuja, E. Crocker, M. Eilers, V. Hornak, A. Hirshfeld, M. Ziliox, N. Syrett, P. J. Reeves, H. G. Khorana, M. Sheves, and S. O. Smith, J. Biol. Chem. 284, 10190 2009.

    Article  Google Scholar 

  8. G. F. J. Salgado, A. V. Struts, K. Tanaka, N. Fujioka, K. Nakanishi, and M. F. Brown, Biochemistry 43, 12819 2004.

    Article  Google Scholar 

  9. A. V. Struts, G. F. J. Salgado, K. Tanaka, S. Krane, K. Nakanishi, and M. F. Brown, J. Mol. Biol. 372, 50 2007.

    Article  Google Scholar 

  10. A. V. Struts, G. F. J. Salgado, K. Martínez-Mayorga, and M. F. Brown, Nat. Struct. Mol. Biol. 18, 392 2011.

    Article  Google Scholar 

  11. D. L. Farrens, C. Altenbach, K. Yang, W. L. Hubbell, and H. G. Khorana, Science 274, 768 1996.

    Article  ADS  Google Scholar 

  12. G. Jeschke, M. Pannier, and H. W. Spiess, Biol. Magn. Reson. 19, 493 2000.

    Article  Google Scholar 

  13. C. Altenbach, A. K. Kusnetzow, O. P. Ernst, K. P. Hofmann, and W. L. Hubbell, Proc. Natl. Acad. Sci. USA 105, 7439 2008.

    Article  ADS  Google Scholar 

  14. A. V. Struts, G. F. J. Salgado, and M. F. Brown, Proc. Natl. Acad. Sci. USA 108, 8263 2011.

    Article  Google Scholar 

  15. K. Tanaka, A. V. Struts, S. Krane, N. Fujioka, G. F. J. Salgado, K. Martínez-Mayorga, M. F. Brown, and K. Nakanishi, Bull. Chem. Soc. Jpn. 80, 2177 2007.

    Article  Google Scholar 

  16. P. J. R. Spooner, J. M. Sharples, S. C. Goodall, H. Seedorf, M. A. Verhoeven, J. Lugtenburg, P. H. M. Bovee-Geurts, W. J. de Grip, and A. Watts, Biochemistry 42, 13371 2003.

    Article  Google Scholar 

  17. E. Crocker, M. Eilers, S. Ahuja, V. Hornak, A. Hirshfeld, M. Sheves, and S. O. Smith, J. Mol. Biol. 357, 163 2006.

    Article  Google Scholar 

  18. S. Ahuja, V. Hornak, E. C. Y. Yan, N. Syrett, J. A. Goncalves, A. Hirshfeld, M. Ziliox, T. P. Sakmar, M. Sheves, P. J. Reeves, S. O. Smith, and M. Eilers, Nat. Struct. Mol. Biol. 16, 168 2009.

    Article  Google Scholar 

  19. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. le Trong, D.C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, and M. Miyano, Science 289, 739 2000.

    Article  ADS  Google Scholar 

  20. D. C. Teller, T. Okada, C. A. Behnke, K. Palczewski, and R. E. Stenkamp, Biochemistry 40, 7761 2001.

    Article  Google Scholar 

  21. T. Okada, M. Sugihara, A.-N. Bondar, M. Elstner, P. Entel, and V. Buss, J. Mol. Biol. 342, 571 2004.

    Article  Google Scholar 

  22. J. Standfuss, P. C. Edwards, A. D’Antona, M. Fransen, G. Xie, D. D. Oprian, and G. F. X. Schertler, Nature 471, 656 2011.

    Article  ADS  Google Scholar 

  23. H.-W. Choe, Y. J. Kim, J. H. Park, T. Morizumi, E. F. Pai, N. Krauß, K. P. Hofmann, P. Scheerer, and O. P. Ernst, Nature 471, 651 2011.

    Article  ADS  Google Scholar 

  24. X. Deupi, P. Edwards, A. Singhal, B. Nickle, D. Oprian, G. Schertler, and J. Standfuss, Proc. Natl. Acad. Sci. USA 109, 119 2012.

    Article  ADS  Google Scholar 

  25. R. Nygaard, Y. Zou, R. O. Dror, T. J. Mildorf, D. H. Arlow, A. Manglik, A. C. Pan, C. W. Liu, J. J. Fung, M. P. Bokoch, F. S. Thian, T. S. Kobilka, D. E. Shaw, L. Mueller, R. S. Prosser, and B. K. Kobilka, Cell 152, 532 2013.

    Article  Google Scholar 

  26. D. J. E. Ingram, Biological and Biochemical Applications of Electron Spin Resonance (Adam Hilger, London, 1969).

    Google Scholar 

  27. I. D. Pogozheva, V. A. Kuznetsov, V. A. Lifshits, I. B. Fedorovich, and M. A. Ostrovskii, Biol. Membr. 2, 880 1985.

    Google Scholar 

  28. G. R. Kalamkarov and M. A. Ostrovskii, Molecular Mechanisms of Visual Reception (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  29. G. I. Likhtenshtein, Method of Spin Labels in Molecular Biology (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  30. B. Knierim, K. P. Hofmann, O. P. Ernst, and W. L. Hubbell, Proc. Natl. Acad. Sci. USA 104, 20290 2007.

    Article  ADS  Google Scholar 

  31. A. V. Struts, A. V. Barmasov, and M. F. Brown, Opt. Spectrosc. 118, 711 2015.

    Article  ADS  Google Scholar 

  32. M. Mahalingam, K. Martínez-Mayorga, M. F. Brown, and R. Vogel, Proc. Natl. Acad. Sci. USA 105, 17795 2008.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Struts.

Additional information

Original Russian Text © A.V. Struts, A.V. Barmasov, M.F. Brown, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 2, pp. 298–306.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struts, A.V., Barmasov, A.V. & Brown, M.F. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods. Opt. Spectrosc. 120, 286–293 (2016). https://doi.org/10.1134/S0030400X16010197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16010197

Keywords

Navigation