Skip to main content

Advertisement

Log in

Beta2-Adrenoceptor Agonists in Parkinson’s Disease and Other Synucleinopathies

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Evidence supporting the use of β2AR agonists in synucleinopathies is rapidly growing. Findings come from different scientific approaches. Molecular and immunological data suggest that adrenergic stimulation may decrease both α-synuclein (α-syn) deposition and pro-inflammatory/neurotoxic molecules release. Small open label clinical trials including a total number of 25 Parkinson’s disease (PD) patients, in which the β2AR agonist salbutamol was added to levodopa, suggest a promising symptomatic benefit. In line with these findings, epidemiological studies investigating the risk of PD development suggest that long term exposure to the agonist salbutamol might be protective, while the antagonist propranolol possibly detrimental. Nonetheless, in both lines of investigation the studies performed so far present important limitations. On the clinical side, large randomized controlled trials are lacking, whereas on the epidemiological side the presence of co-morbid conditions (i.e. smoking and essential tremor) potentially influencing PD risk should taken into consideration. In summary, it is our opinion that β2AR stimulation in synucleinopathies has a rationale and therefore merits further investigation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ağaç D, Estrada LD, Maples R, Hooper LV , Farrar JD. (2018). The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion Brain Behav Immun. https://doi.org/10.1016/j.bbi.2018.09.004

  • Alberio T, Pippione AC, Zibetti M, Olgiati S, Cecconi D, Comi C, Lopiano L, Fasano M (2012a) Discovery and verification of panels of T-lymphocyte proteins as biomarkers of Parkinson's disease. Sci Rep 2:953

    PubMed  PubMed Central  Google Scholar 

  • Alberio T, Pippione AC, Comi C, Olgiati S, Cecconi D, Zibetti M, Lopiano L, Fasano M (2012b) Dopaminergic therapies modulate the T-CELL proteome of patients with Parkinson's disease. IUBMB Life 64:846–852

    CAS  PubMed  Google Scholar 

  • Alexander GM, Schwartzman RJ, Nukes TA, Grothusen JR, Hooker MD (1994) β2-adrenergic agonist as adjunct therapy to levodopa in Parkinson’s disease. Neurology 44:1511–1513

    CAS  PubMed  Google Scholar 

  • Arango V, Ernsberger P, Reis DJ, Mann JJ (1990) Demonstration of high- and low-affinity beta-adrenergic receptors in slide-mounted sections of rat and human brain. Brain Res 516:113–121

  • Barker RA, Williams-Gray CH (2016) Review: the spectrum of clinical features seen with alpha synuclein pathology. Neuropathol Appl Neurobiol 42:6–19

    CAS  PubMed  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20:415–455

    CAS  PubMed  Google Scholar 

  • Bhide N, Lindenbach D, Barnum CJ, George JA, Surrena MA, Bishop C (2015) Effects of beta-adrenergic receptor antagonist propranolol on dyskinesia and L-DOPA-induced striatal DA efflux in the hemi-parkinsonian rat. J Neurochem 134:222–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bottner M, Fricke T, Müller M, Barrenschee M, Deuschl G, Schneider SA et al (2015) Alpha-synuclein is associated with the synaptic vesicle apparatus in the human and rat enteric nervous system. Brain Res 1614:51–59

    PubMed  Google Scholar 

  • Brown CG (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35:1119–1121

    CAS  PubMed  Google Scholar 

  • Bujis RM, van der Vliet J, Garidou ML, Huitinga I, Escobar C (2008) Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS One 3:3152

    Google Scholar 

  • Butkovich LM, Houser MC, Tansey MG (2018) α-Synuclein and noradrenergic modulation of immune cells in Parkinson’s disease pathogenesis. Front Neurosci 12:626. https://doi.org/10.3389/fnins.2018.00626

    Article  PubMed  PubMed Central  Google Scholar 

  • Cappellano G, Carecchio M, Fleetwood T, Magistrelli L, Cantello R, Dianzani U et al (2013) Immunity and inflammation in neurodegenerative diseases. Am J Neurodegener Dis 21:89–107

    Google Scholar 

  • Cash R, Ruberg M, Raisman R, Agid Y (1984) Adrenergic receptors in Parkinson’s disease. Brain Res 322:269–275

    CAS  PubMed  Google Scholar 

  • Comi C, Magistrelli L, Oggioni GD, Carecchio M, Fleetwood T, Cantello R, Mancini F, Antonini A (2014) Peripheral nervous system involvement in Parkinson’s disease: evidence and controversies. Parkinsonism Relat Disord 20:1329–1334

    CAS  PubMed  Google Scholar 

  • Comi C, Ferrari M, Marino F, Magistrelli L, Cantello R, Riboldazzi G et al (2017) Polymorphisms of dopamine receptor genes and risk of L-Dopa-induced dyskinesia in parkinson's disease. Int J Mol Sci 24:pii: E242

    Google Scholar 

  • Corrado L, De Marchi F, Tunesi S, Oggioni GD, Carecchio M, Magistrelli L et al (2018) The length of SNCA Rep1 microsatellite may influence cognitive evolution in Parkinson's disease. Front Neurol 9:213

    PubMed  PubMed Central  Google Scholar 

  • Cosentino M, Marino F (2013) Adrenergic and dopaminergic modulation of immunity in multiple sclerosis: teaching old drugs new tricks? J NeuroImmune Pharmacol 8:163–179

    PubMed  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism, storage and uptake in human neutrophils. Life Sci 64:975–981

    CAS  PubMed  Google Scholar 

  • Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642

    CAS  PubMed  Google Scholar 

  • Cosentino M, Ferrari M, Kustrimovic N, Rasini E, Marino F (2015) Influence of dopamine receptor gene polymorphisms on circulating T lymphocytes: a pilot study in healthy subjects. Hum Immunol 76:747–752

    CAS  PubMed  Google Scholar 

  • Culmsee C, Junker V, Kremers W, Thal S, Plesnila N, Krieglstein J (2004) Combination therapy in ischemic stroke: synergistic neuroprotective effects of Memantine and Clenbuterol. Stroke 35:1197–1202

    PubMed  Google Scholar 

  • Elliott L, Brooks W, Roszman T (1992) Inhibition of anti-CD3 monoclonal antibody-induced T-cell proliferation by dexamethasone, isoproterenol, or prostaglandin E2 either alone or in combination. Cell Mol Neurobiol 12:411–427

    CAS  PubMed  Google Scholar 

  • Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, Bezard E, Picconi B, Calabresi P, Lang AE (2018) Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts. Ann Neurol 84:797–811. https://doi.org/10.1002/ana.25364

    Article  PubMed  Google Scholar 

  • Farmer P, Pugin J (2000) Beta-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 279:L675–L682

    CAS  PubMed  Google Scholar 

  • Gendelman HE, Zhang Y, Santamaria P, Olson KE, Schutt CR, Bhatti D, Shetty BLD, Lu Y, Estes KA, Standaert DG, Heinrichs-Graham E, Larson LA, Meza JL, Follett M, Forsberg E, Siuzdak G, Wilson TW, Peterson C, Mosley RL (2017) Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1clinical Parkinson’s disease. Npj Parkinsons disease 3:10. https://doi.org/10.1038/s41531-017-0013-5

    Article  Google Scholar 

  • George S, Brundin P (2015) Immunotherapy in Parkinson's disease: micromanaging alpha-Synuclein aggregation. J Parkinsons Dis 5:413–424

    PubMed  PubMed Central  Google Scholar 

  • Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P et al (2008) Movement Disorder Society UPDRS revision task force. Movement Disorder Society sponsored revision of the unified Parkinson’s disease rating scale (MDSUPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129

    PubMed  Google Scholar 

  • Gomez-Mancilla B, Bedard PJ (1993) Effect of nondopaminergic drugs on L-Dopa-induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol 16:418–427

    CAS  PubMed  Google Scholar 

  • Gronich N, Abernethy DR, Auriel E, Lavi I, Rennert G, Saliba W (2018) β2-adrenoceptor agonists and antagonists and risk of Parkinson's disease. Mov Disord 33:1465–1471

    CAS  PubMed  Google Scholar 

  • Hishida R, Kurahashi K, Narita S, Baba T, Matsunaga M (1992) “Wearing-off” and beta 2-adrenoceptor agonist in Parkinson’s disease. Lancet 339:870

    CAS  PubMed  Google Scholar 

  • Kenney MJ, Ganta CK (2014) Autonomic nervous system and immune system interactions. Compr Physiol 4:1177–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khoury SJ, Healy BC, Kivisäkk P, Viglietta V, Egorova S, Guttmann CR (2010) A randomized controlled double-masked trial of albuterol add-on therapy in patients with multiple sclerosis. Arch Neurol 67:1055–1061

    PubMed  PubMed Central  Google Scholar 

  • Koros C, Simitsi A, Stefanis L (2017) Genetics of Parkinson's disease: genotype-phenotype correlations. Int Rev Neurobiol 132:197–231

    PubMed  Google Scholar 

  • Kostrzewa RM (2007) The blood-brain barrier for cathecolamines – revisited. Neurotox Res 11:261–271

    CAS  PubMed  Google Scholar 

  • Kustrimovic N, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Comi C, Mauri M, Minafra B, Riboldazzi G, Sanchez-Guajardo V, Marino F, Cosentino M (2016) Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson's disease. Sci Rep 6:33738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kustrimovic N, Comi C, Magistrelli L, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Minafra B, Riboldazzi G, Sturchio A, Mauri M, Bono G, Marino F, Cosentino M (2018) Parkinson's disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J Neuroinflammation 15:205

    PubMed  PubMed Central  Google Scholar 

  • Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, de Keyser J (2010) Astrocytic β-2 adrenergic receptors: from physiology to pathology. Prog Neurobiol 91:189–199

    CAS  PubMed  Google Scholar 

  • Lee W, Koh S, Hwang S, Kim SH (2018) Presynaptic dysfunction by familial factors in Parkinson disease. Int Neurourol J 22:S115–S121

    PubMed  PubMed Central  Google Scholar 

  • Lindenbach D, Ostock CY, Eskow Jaunarajs KL, Dupre KB, Barnum CJ, Bhide N, Bishop C (2011) Behavioural and cellular modulation of L-DOPA-induced dyskinesia by β-adrenoceptor receptor blockade in the 6-OHDA lesioned rat. J Pharmacol Exp Ther 337:755–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Rui XX, Shi H, Qiu YH, Peng YP (2018) Norepinephrine inhibits Th17 cells via beta2-adrenergic receptor (beta2-AR) signaling in a mouse model of rheumatoid arthritis. Med Sci Monit 24:1196–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maestroni GJ (2006) Sympathetic nervous system influence on the innate immune response. Ann N Y Acad Sci 1069:195–207

    PubMed  Google Scholar 

  • Makhlouf K, Comabella M, Imitola J, Weiner HL, Khoury SJ (2001) Oral salbutamol decreases IL-12 in patients with secondary progressive multiple sclerosis. J Neuroimmunol 117:156–165

    CAS  PubMed  Google Scholar 

  • Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45:55–71

    CAS  PubMed  Google Scholar 

  • Miraglia F, Ricci A, Rota L, Colla E (2018) Subcellular localization of alpha-synuclein aggregates and their interaction with membranes. Neural Regen Res 13:1136–1144

    PubMed  PubMed Central  Google Scholar 

  • Mittal S, Børnevik K, Soon Im D, Flierl A, Xianjun D, Locascio JJ et al (2017) β2-Adrenoreceptor is a regulator of the synuclein gene driving risk of Parkinson’s disease. Science 357:891–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen SS, Gross A, Camacho-Soto A, Willis AW, Racette BA (2018) β2-adrenoreceptor medications and risk of Parkinson disease. Ann Neurol 84:683–693. https://doi.org/10.1002/ana.25341

    Article  CAS  PubMed Central  Google Scholar 

  • Paul-Eugène N, Kolb JP, Damais C, Abadie A, Mencia-Huerta JM, Braquet P, Bousquet J, Dugas B (1994) Beta-2 adrenoceptors agonists regulate the IL-4-induced phenotypical changes and IgE-dependent functions in normal human monocytes. J Leukoc Biol 55:313–320

    PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1985) Β-adrenoceptor subtypes in the human brain: autoradiographic localization. Brain Res 358:201–206

    Google Scholar 

  • Peterson L, Ismond KP, Chapman E, Flood P (2014) Potential benefits of therapeutic use of β2-adrenergic receptor agonists in neuroprotection and Parkinson’s disease. Journal of immunology research. J Immunol Res 2014:103780

    PubMed  PubMed Central  Google Scholar 

  • Pillon, Dubois B, Cusimano G, Bonnet AM, Lhermitte F, Agid Y (1989) Does cognitive impairment in Parkinson’s disease result from non-dopamingergic lesions? J Neurol Neurosurg Psychiatry 52:201–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian L, Wu HM, Chen AH, Zhang D, Ali SF, Peterson L et al (2011) β2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. J Immunol 186:4443–4454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of β1-and β2-adrenergic receptors in rat brain. Proc Natl Acad Sci U S A 81:1585–1589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratge D, Wiedemann A, Kohse KP, Wisser H (1988) Alterations of beta-adrenoceptors on human leukocyte subsets induced by dynamic exercise: effect of prednisone. Clin Exp Pharmacol Physiol 15:43–53

    CAS  PubMed  Google Scholar 

  • Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, Ross GW, Strickland D, van den Eeden SK, Gorell J (2007) Pooled analysis of tobacco use and risk of Parkinson disease. Arch Neurol 64:990–997

    PubMed  Google Scholar 

  • Sanders VM (2012) The beta2-adrenergic receptor on T and B lymphocytes: do we understand it yet? Brain, Behaviour and Immunity 26:195–200

    CAS  Google Scholar 

  • Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol 6:171. https://doi.org/10.3389/fphar.2015.00171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scanzano A, Schembri L, Rasini E, Luini A, Dellatorre J, Legnaro M et al (2015) Adrenergic modulation of migration, Cd11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes. Inflamm Res 64:127–135

    CAS  PubMed  Google Scholar 

  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction od cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson disease. Brain Res 275:321–328

    CAS  PubMed  Google Scholar 

  • Stamelou M, Bhatia KP (2016) Atypical parkinsonism-new advances. Curr Opin Neurol 29:480–485

    PubMed  Google Scholar 

  • Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C, Hildebrand WH, Mao X, Dawson VL, Dawson TM, Oseroff C, Pham J, Sidney J, Dillon MB, Carpenter C, Weiskopf D, Phillips E, Mallal S, Peters B, Frazier A, Lindestam Arlehamn CS, Sette A (2017) T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature 546:656–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson's disease. J Neurochem 139:318–324

    CAS  PubMed  Google Scholar 

  • Swanson MA, Lee WT, Sanders VM (2001) IFN-gamma production by Th1 cells generated from naive CD4? T cells exposed to norepinephrine. J Immunol 166:232–240

    CAS  PubMed  Google Scholar 

  • Takahashi HK, Iwagaki H, Mori S, Yoshino T, Tanaka N, Nishibori M (2004) Beta 2-adrenergic receptor agonist induces IL-18 production without IL-12 production. J Neuroimmunol 151:137–147

    CAS  PubMed  Google Scholar 

  • Tank AW, Wong DL (2015) Peripheral and central effects of circulating cathecolamines. Compr Physiol 5:1–15

    PubMed  Google Scholar 

  • Teng YD, Choi D, Huang R, Onario C, Frontera WR, Sydner EY et al (2006) Therapeutic effects of clenbuterol in a murine model of amyotrophic lateral sclerosis. Neurosci Lett 97:155–158

    Google Scholar 

  • Thenganatt MA, Jankovic J (2016) The relationship between essential tremor and Parkinson's disease. Parkinsonism Relat Disord 22:S162–S165

    PubMed  Google Scholar 

  • Uc EY, Dienel GA, Cruz NF, Hark SI (2002) β-Adrenergics enhance brain extraction of levodopa. Mov Disord 17:54–59

    PubMed  Google Scholar 

  • Uc EY, Lambert CP, Harik SI, Rodnitzky RL, Evans WJ (2003) Albuterol improves response to levodopa and increases skeletal muscle mass in patients with fluctuating Parkinson disease. Clin Neuropharmacol 26:207–212

    CAS  PubMed  Google Scholar 

  • Vargas KJ, Schrod N, Davis T, Fernandez-Busnadiego R, Taguchi YV, Laugks U, Lucic V, Chandra SS (2017) Synucleins have multiple effects on presynaptic architecture. Cell Rep 18:161–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waeber C, Rigo M, Chinaglia G, Probst A, Palacios JM (1991) Beta-adrenergic receptor subtypes in the basal ganglia of patients with Huntington’s chorea and Parkinson’s disease. Synapse 8:270–280

    CAS  PubMed  Google Scholar 

  • Xu L, Ding W, Stohl LL, Zhou XK, Azizi S, Chuang E, Lam J, Wagner JA, Granstein RD (2018) Regulation of T helper cell responses during antigen presentation by norepinephrine-exposed endothelial cells. Immunology 154:104–121

    CAS  PubMed  Google Scholar 

  • Zhu H, Lemos H, Bhatt B, Islam BN, Singh A, Gurav A, Huang L, Browning DD, Mellor A, Fulzele S, Singh N (2017) Carbidopa, a drug in use for management of Parkinson disease inhibits T cell activation and autoimmunity. PLoS One 12(9):e0183484

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the AGING PROJECT – Department of Excellence – Università del Piemonte Orientale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristoforo Comi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magistrelli, L., Comi, C. Beta2-Adrenoceptor Agonists in Parkinson’s Disease and Other Synucleinopathies. J Neuroimmune Pharmacol 15, 74–81 (2020). https://doi.org/10.1007/s11481-018-09831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-018-09831-0

Keywords

Navigation