Skip to main content
Log in

Simulation of charge transport in ion channels and nanopores with anisotropic permittivity

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Ion channels are part of nature’s solution for regulating biological environments. Every ion channel consists of a chain of amino acids carrying a strong and sharply varying permanent charge, folded in such a way that it creates a nanoscopic aqueous pore spanning the otherwise mostly impermeable membranes of biological cells. These naturally occurring proteins are particularly interesting to device engineers seeking to understand how such nanoscale systems realize device-like functions. Availability of high-resolution structural information from X-ray crystallography, as well as large-scale computational resources, makes it possible to conduct realistic ion channel simulations. In general, a hierarchy of simulation methodologies is needed to study different aspects of a biological system like ion channels. Biology Monte Carlo (BioMOCA), a three-dimensional coarse-grained particle ion channel simulator, offers a powerful and general approach to study ion channel permeation. BioMOCA is based on the Boltzmann Transport Monte Carlo (BTMC) and Particle-Particle-Particle-Mesh (P3M) methodologies developed at the University of Illinois at Urbana-Champaign. In this paper we briefly discuss the various approaches to simulating ion flow in channel systems that are currently being pursued by the biophysics and engineering communities, and present the effect of having anisotropic dielectric constants on ion flow through a number of nanopores with different effective diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hille, B.: Ionic Channels of Excitable Membranes. Sinauer, Sunderland (2001)

    Google Scholar 

  2. Ashcroft, F.M.: Ion Channels and Disease. Academic Press, New York (1999)

    Google Scholar 

  3. Eisenberg, B.: J. Comput. Electron. 2, 245 (2003)

    Article  Google Scholar 

  4. Sambrook, J., Russell, D.W.: Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, New York (2001)

    Google Scholar 

  5. Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R.: Molecular Biology of the Gene, 5th edn. Benjamin-Cummings, Redwood City (2003)

    Google Scholar 

  6. Tieleman, D.P., Biggin, P.C., Smith, G.R., Sansom, M.S.: Q. Rev. Biophys. 34, 473 (2001)

    Google Scholar 

  7. van der Straaten, T.A., Kathawala, G., Ravaioli, U.: J. Comput. Theor. Nanosci. 3, 1 (2006)

    Google Scholar 

  8. Roux, B., Allen, T., Berneche, S., Im, W.: Q. Rev. Biophys. 37, 15 (2004)

    Article  Google Scholar 

  9. Pauling, L., Wilson, E.B. Jr.: Introduction to Quantum Mechanics with Applications to Chemistry. Dover, New York (1985)

    Google Scholar 

  10. Guillet, V., Roblin, P., Werner, S., Coraiola, M., Menestrina, G., Monteil, H., Prevost, G., Mourey, L.: J. Biol. Chem. 279, 41028 (2004)

    Article  Google Scholar 

  11. MacKerell, A.D. Jr., Bashford, D., Bellott, M., Dunbrack, R.L. Jr., Evanseck, J., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E. III, Roux, B., Schlenkrich, M., Smith, J., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: J. Phys. Chem. B 102, 3586 (1998)

    Article  Google Scholar 

  12. MacKerell, A.D. Jr., Brooks, B., Brooks, C.B. III, Nilsson, L., Roux, B., Won, Y., Karplus, M.: CHARMM: the energy function and its parametrization with an overview of the program. In: Schleyer, P.v.R., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F. III, Schreiner, P.R. (eds.) Encyclopedia of Computational Chemistry, vol. 1, p. 271. Wiley, Chichester (1998)

    Google Scholar 

  13. MacKerell, A.D. Jr., Bashford, D., Bellott, M., Dunbrack, R.L. Jr., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Roux, B., Schlenkrich, M., Smith, J., Stote, R., Straub, J., Wiorkiewicz-Kuczera, J., Karplus, M.: FASEB J. 6, A143 (1992)

    Google Scholar 

  14. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M. Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: J. Am. Chem. Soc. 117, 5179 (1995)

    Article  Google Scholar 

  15. http://amber.scripps.edu/doc8/amber8.pdf, and references within

  16. http://www.igc.ethz.ch/gromos/

  17. Jorgensen, W.L.: OPLS force fields. In: Schleyer, P.v.R. (ed.) The Encyclopedia of Computational Chemistry. Wiley, Athens (1998)

    Google Scholar 

  18. Jorgensen, W.L., Tirado-Rives, J.: J. Am. Chem. Soc. 110, 1657 (1988)

    Article  Google Scholar 

  19. Sitkoff, D., Sharp, K.A., Honig, B.: J. Phys. Chem. 98, 1978 (1994)

    Article  Google Scholar 

  20. van der Straaten, T.A., Kathawala, G., Trellakis, A., Eisenberg, R.S., Ravaioli, U.: Mol. Simul. 31, 151 (2005)

    Article  Google Scholar 

  21. Li, S.C., Hoyles, M., Kuyucak, S., Chung, S.H.: Biophys. J. 74, 37 (1998)

    Article  Google Scholar 

  22. Chung, S.H., Hoyles, M., Allen, T.W., Kuyucak, S.: Biophys. J. 75, 793 (1998)

    Article  Google Scholar 

  23. Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, New York (1989)

    Google Scholar 

  24. Hockney, R., Eastwood, J.: Computer Simulation Using Particles. McGraw-Hill, New York (1981)

    Google Scholar 

  25. Warshel, A., Russell, S.T.: Q. Rev. Biol. 17, 283 (1984)

    Google Scholar 

  26. Schutz, C.N., Warshel, A.: Proteins 44, 400 (2001)

    Article  Google Scholar 

  27. Warshel, A., Papazyan, A.: Curr. Opin. Struct. Biol. 8, 211 (1998)

    Article  Google Scholar 

  28. Baker, N.A., Sept, D., Holst, M.J., McCammon, J.A.: IBM J. Res. Dev. 45, 427 (2001)

    Article  Google Scholar 

  29. Corry, B., Kuyucak, S., Chung, S.H.: Biophys. J. 78, 2364 (2000)

    Article  Google Scholar 

  30. Chen, D.P., Lear, J., Eisenberg, R.S.: Biophys. J. 72, 97 (1997)

    Article  Google Scholar 

  31. Noskov, S.Y., Im, W., Roux, B.: Biophys. J. 87, 2299 (2004)

    Article  Google Scholar 

  32. Rosenfeld, Y.: J. Chem. Phys. 98, 8126 (1993)

    Article  Google Scholar 

  33. Gillespie, D., Nonner, W., Eisenberg, R.S.: J. Phys., Condens. Matter 14, 12129 (2002)

    Article  Google Scholar 

  34. Im, W., Roux, B.: J. Mol. Biol. 322, 851 (2002)

    Article  Google Scholar 

  35. van der Straaten, T.A., Tang, J.M., Ravaioli, U., Eisenberg, R.S., Aluru, N.: J. Comput. Electron. 2, 29 (2003)

    Article  Google Scholar 

  36. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, New York (1984)

    Google Scholar 

  37. http://www.ks.uiuc.edu/Research/vmd

  38. Joseph, S., Mashl, R.J., Jakobsson, E.: Nano Lett. 3(10), 1399 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Toghraee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toghraee, R., Mashl, R.J., Lee, K.I. et al. Simulation of charge transport in ion channels and nanopores with anisotropic permittivity. J Comput Electron 8, 98–109 (2009). https://doi.org/10.1007/s10825-009-0272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0272-4

Keywords

Navigation