Skip to main content
  • Original Article
  • Published:

Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps

Adaptation photosynthétique à la température de Pinus cembra dans l’écotone de la limite supérieure de la forêt dans les Alpes centrales autrichiennes

Abstract

  • • Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism.

  • • We focused on the effects of air and soil temperature on net photosynthesis (P n) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall.

  • • In general, P n was significantly lower in fall as compared to summer. Nevertheless, independent from season mean P n values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement.

  • • Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime.

Résumé

  • • La température est supposée déterminer la limite supérieure de la vie de des arbres. Par conséquent, le réchauffement climatique futur, peut avoir de l’importance pour la distribution des arbres dans les Alpes européennes, où les basses températures limitent le métabolisme du carbone.

  • • Nous nous sommes concentrés sur les effets de la température de l’air et du sol, sur la photosynthèse nette (P n) de Pinus cembra une espèce sempervirente climaxique de l’écotone de la limite supérieure de la forêt des Alpes centrales autrichiennes. Les courbes de réponse à la lumière et à la température ont été déterminées, en été et en automne, le long d’un gradient d’altitude allant de la limite de la forêt jusqu’à la limite des arbres rabougris (krummholz).

  • • En général, P n a été significativement plus faible en l’automne qu’en été. Néanmoins, indépendamment de la saison, les valeurs moyennes de P n ont eu tendance à augmenter avec l’altitude et ont été positivement corrélées avec les températures de la zone racinaire. En revanche, la surface foliaire spécifique a diminué avec l’augmentation de l’altitude. En outre, la température optimale de la photosynthèse nette a diminué avec l’augmentation de l’altitude et a été positivement corrélée avec la température maximale moyenne de l’air des 10 jours précédant la date de mesure.

  • • Ainsi, nos résultats semblent refléter une adaptation à long terme de l’appareil photosynthétique de Pinus cembra aux conditions générales de température à l’égard de l’altiude, combinée avec une courte durée d’acclimatation au régime thermique courant.

References

  • Aulitzky H., 1961. Die Bodentemperaturverhältnisse in der Kampfzone oberhalb der Waldgrenze und im subalpinen Zirben-Lärchenwald. Mitt. Forstl. Bundesvers. Mariabrunn 59: 153–208.

    Google Scholar 

  • Battagila M., Beadle C., and Loughead S., 1996. Photosynthetic temperature response of Eucalyptus globulus and Eucalyptus nitens. Tree Physiol. 16: 81–99.

    Google Scholar 

  • Benecke U. and Havranek W.M., 1980. Gas exchange of trees at altitudes up to timberline, Craigieburn Range, New Zealand. In: Benecke U., Davies M.D. (Eds.), Mountain environments and subalpine tree growth. Technical report 70, New Zealand Forest Service, pp. 195–212.

  • Benecke U., Schulze E.-D., Matyssek R., and Havranek W.M., 1981. Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50: 54–61.

    Article  Google Scholar 

  • Beniston M., Diaz H.F., and Bradley R.S., 1997. Climate change at high elevation sites: an overview. Clim. Change 36: 233–251.

    Article  Google Scholar 

  • Cartellieri E., 1935. Jahresgang von osmotischem Wert, Transpiration und Assimilation einiger Ericaceen der alpinen Zwergstrauchheide und von Pinus cembra. Jahrb. Wiss. Bot. 82: 460–506.

    Google Scholar 

  • Cavieres L.A., Rada F., Azocar A., Garcia-Nunez C., and Cabera H.M., 2000. Gas exchange and low temperature resistance in two tropical high mountain tree species in the Venezuelan Andes. Acta Oecol. 21: 203–211.

    Article  Google Scholar 

  • Cunningham S.C. and Read J., 2002. Comparison of temperature and tropical rainforest tree species: photosynthetic response to temperature. Oecologia 133: 112–119.

    Article  Google Scholar 

  • Day T.A., DeLucia E.H., and Smith W.K., 1989. Influence of cold soil and snow cover on photosynthesis and leaf conductance in two Rocky Mountain conifers. Oecologia 80: 546–552.

    Article  Google Scholar 

  • DeLucia E.H., 1986. Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmanii Parry ex Engelm.) seedlings. Tree Physiol. 2: 143–154.

    PubMed  CAS  Google Scholar 

  • Diaz H.F. and Bradley R.S., 1997. Temperature variations during the last century at high elevation sites. Clim. Change 36: 253–279.

    Article  Google Scholar 

  • Ellenberg H., 1996. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5. Auflage, Ulmer, Stuttgart, 1095 p.

    Google Scholar 

  • FAO, ISRIC, and ISSS, 1998. World reference for soil resources. FAO, Rome, 109 p.

    Google Scholar 

  • Grace J., Berninger F., and Nagy L., 2002. Impact of climate change on the treeline. Ann. Bot. 90: 537–544.

    Article  PubMed  CAS  Google Scholar 

  • Gruber A., Zimmermann J., Wieser G., and Oberhuber W., 2009a. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine timberline ecotone. Ann. For. Sci. 66: 503.

    Article  PubMed  Google Scholar 

  • Gruber A., Wieser G., and Oberhuber W., 2009b. Effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine timberline: a new approach based on root zone roofing. Eur. J. For. Res. Doi: 10.1007/s10342-009-0305-3.

  • Häsler R., 1994. Ecophysiological investigations on cembran pine at timberline in the Alps, an overview. In: Schmidt W.C., and Holtmeier F.-K. (Eds.), Proceedings of an International workshop on Subalpine stone pines and their environment: the status of knowledge, Sept. 5–11, St. Moritz, Switzerland. Tech. Rep. INT-GTR-309, US Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, pp. 61–66.

    Google Scholar 

  • Havranek W.M., 1972. Über die Bedeutung der Bodentemperatur für die Photosynthese und die Transpiration junger Forstpflanzen und für die Stoffproduktion an der Waldgrenze. Angew. Bot. 46: 101–116.

    Google Scholar 

  • Holtmeier F.-K. and Broll G., 2007. Treeline advance — driving processes and adverse factors. Landscape Online 1: 1–33.

    Article  Google Scholar 

  • Hurtin K.R. and Marshall J.D., 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123: 32–40.

    Article  Google Scholar 

  • IPCC, 2007. Climate change 2007, Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones P.D., Wigley T.M.L., Folland C.K., Parker D.E., Angelli J.K., Jebedeff S., and Hansen J.E., 1988. Evidence of global warming in the last decade. Nature 332: 791.

    Article  Google Scholar 

  • Körner Ch., 2003. Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd ed., Springer, Berlin, 344 p.

    Google Scholar 

  • Körner C., 2007, Climatic treelines: conventions, global patterns, causes. Erdkunde 61: 316–324.

    Article  Google Scholar 

  • Körner C. and Paulsen L., 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31: 713–732.

    Article  Google Scholar 

  • Larcher W., 1967. Die Berge einzigartiges Versuchsfeld der Natur. Jahrb. Ver. Schutze Alpenpflanzen Tiere 32: 1–7.

    Google Scholar 

  • Larcher W., 2001. Ökophysiologie der Pflanzen: Leben, Leistung und Stressbewältigung der Pflanzen in ihrer Umwelt, Ulmer, Stuttgart, 408 p.

    Google Scholar 

  • Ledig F.T. and Korbobo D.R., 1983. Adaptation of sugar maple populations along altitudinal gradients: photosynthesis, respiration, and specific leaf weight. Am. J. Bot. 70: 256–265.

    Article  Google Scholar 

  • Neuwinger I., 1970. Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitt. Ostalpin-Dinarischen Ges. 11: 135–150.

    Google Scholar 

  • Neuwinger I., 1980. Erwärmung, Wasserrückhalt und Erosionsbereitschaft subalpiner Böden. Mitt. Forstl. Bundesvers. Wien 129: 113–144.

    Google Scholar 

  • Oberhuber W., 2007. Limitation by growth processes. In: Wieser G., and Tausz M. (Eds.), Trees at their upper limit. Treelife limitation, at the alpine timberline, Plant Ecophysiology, Vol. 5, Springer, Dorthrecht, The Netherlands, pp. 131–143.

    Google Scholar 

  • Pisek A., Larcher W., Moser W., and Pack I., 1969. Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temberaturbereich der Netto-Photosynthese. Flora Abt. B 158: 608–630.

    Google Scholar 

  • Pisek A., Larcher W., Vegis A., and Napp-Zinn K., 1973. The normal temperature range. In: Precht H., Christophersen J., Hensel H., and Larcher W. (Eds.), Temperature and life, Springer, Berlin, Heidelberg, New York, pp. 102–194.

    Google Scholar 

  • Pisek A. and Winkler E., 1958. Assimilationsvermögen und Respiration der Fichte (Picea excelsa LINK) in verschiedenen Höhenlagen und der Zirbe (Picea abies L.) an der alpinen Waldgrenze. Planta 51: 518–543.

    Article  CAS  Google Scholar 

  • Rada F., Azocar A., Gonzales J., and Briceno B., 1998. Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecol. 19: 73–79.

    Article  Google Scholar 

  • Richardson A.D., Berlyn G.P., and Gregorie T.G., 2001. Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamifera (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire, USA. Am. J. Bot. 88: 667–676.

    Article  CAS  Google Scholar 

  • Sall T. and Pettersen P., 1994. A model of photosynthetic acclimation as a special case of reaction norms. Theor. Biol. 166: 1–8.

    Article  Google Scholar 

  • Slatyer R.O., 1977. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Sreng. I. Seasonal changes under field conditions in the Snowy Mountains area of South-east australy. Aust. J. Bot. 25: 1–20.

    Article  Google Scholar 

  • Slatyer R.O., 1978. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. Ex Sreng. VII. Relationships between gradients of field temperature and photosynthetic temperature optima in the Snowy Mountains area. Aust. J. Bot. 26: 111–121.

    Article  Google Scholar 

  • Sternberg P., De Lucia E.H., Schoettle A.W., and Smolander H., 1995. Photosynthetic light capture and processing from cell to canopy. In: Smith W.K. and Hinckley T.M. (Eds.), Ecophysiology of coniferous forests, Academic Press, San Diego, pp. 3–38.

    Google Scholar 

  • Tranquillini W., 1976. Water relations at timberline. In: Lange O.L., Kappen L., and Schulze E.-D. (Eds.), Water relations and plant life. Problems and modern approaches, Ecological Studies, Vol. 19. Springer, Berlin, Heidelberg, New York, pp. 473–491.

    Google Scholar 

  • Tranquillini W., 1979. Physiological ecology of the alpine timberline, Ecol. Stud. 31, Springer Verlag, Berlin, 137 p.

    Google Scholar 

  • Von Caemmerer S. and Farquhar G.D., 1981. Some relationships between the biochemistry of photosynthesis and gas exchange of leaves. Planta 153: 376–387.

    Article  Google Scholar 

  • Walther G.-R., 2003. Plants in a warmer world. Perspect. Plant. Ecol. Evol. Syst. 6: 169–185.

    Article  Google Scholar 

  • Walther G.-R., Beißner S., and Pott R., 2005. Climate change and high mountain vegetation shifts. In: Broll G. and Keplin B. (Eds.), Mountain ecosystems, Studies in Treeline Ecology, Springer, Berlin, Heidelberg, pp. 77–95.

    Google Scholar 

  • Wang Q., Ilo A., Tenhunen J., and Kalkubari Y., 2008. Annual and seasonal variations in photosynthetic capacity of Fagus crenata along an elevation gradient in the Naeba Mountains, Japan. Tree Physiol. 28: 277–285.

    Google Scholar 

  • Wieser G., 1997. Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol. 17: 473–477.

    PubMed  Google Scholar 

  • Wieser G., 2002. Exchange of trace gases at the tree — atmosphere interface: ozone. In: Gasche R., Papen H., and Rennenberg H. (Eds.), Trace gas exchange in forest ecosystems, Tree Physiology, Vol. 3, Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 211–226.

    Google Scholar 

  • Wieser G., 2004. Environmental control of carbon dioxide gas exchange in needles of a mature Pinus cembra tree at the alpine timberline during the growing season. Phyton 44: 145–153.

    Google Scholar 

  • Wieser G., Matyssek R., Luzian R., Zwerger P., Pindur P., Oberhuber W., and Gruber A. 2009. Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann. For. Sci. 66: 402.

    Article  PubMed  Google Scholar 

  • Wieser G. and Stöhr D., 2005. Net ecosystem carbon dioxide exchange dynamics in a Pinus cembra forest at the upper timberline in the central Austrian Alps. Phyton 45: 233–242.

    CAS  Google Scholar 

  • Wieser G. and Tausz M., 2007. Trees at their upper limit: Treelife limitation at the alpine timberline, Plant Ecophysiology, Vol. 5, Springer, 232 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wieser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieser, G., Oberhuber, W., Walder, L. et al. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps. Ann. For. Sci. 67, 201 (2010). https://doi.org/10.1051/forest/2009094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009094

Keywords

Mots-clés