Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Oncolytic viral therapies

Abstract

Molecular research has vastly advanced our understanding of the mechanism of cancer growth and spread. Targeted approaches utilizing molecular science have yielded provocative results in the treatment of cancer. Oncolytic viruses genetically programmed to replicate within cancer cells and directly induce toxic effect via cell lysis or apoptosis are currently being explored in the clinic. Safety has been confirmed and despite variable efficacy results several dramatic responses have been observed with some oncolytic viruses. This review summarizes results of clinical trials with oncolytic viruses in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bell JC, Lichty B, Stojdl D . Getting oncolytic virus therapies off the ground. Cancer Cell. 2003;4:7–11.

    Article  CAS  PubMed  Google Scholar 

  2. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996;274:373–376.

    Article  CAS  PubMed  Google Scholar 

  3. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997;3:639–645.

    Article  CAS  PubMed  Google Scholar 

  4. Yu DC, Sakamoto GT, Henderson DR . Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res. 1999;59:1498–1504.

    CAS  PubMed  Google Scholar 

  5. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR . The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res. 1999;59:4200–4203.

    CAS  PubMed  Google Scholar 

  6. Heise C, Hermiston T, Johnson L, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med. 2000;6:1134–1139.

    Article  CAS  PubMed  Google Scholar 

  7. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther. 1998;9:1323–1333.

    Article  CAS  PubMed  Google Scholar 

  8. Fueyo J, Gomez-Manzano C, Alemany R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000;19:2–12.

    Article  CAS  PubMed  Google Scholar 

  9. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest. 2000;106:763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson L, et al. Cytosine deaminase-armed selectively-replicating adenovirus for the treatment of cancer. Proc Am Assoc Cancer Res. 2002;43:3257.

    Google Scholar 

  11. Hallenbeck PL, et al. Oncolytic adenoviruses dependent on two prevalent alterations in human cancer; disregulation of the Rb-pathway and telomerase. Mol Ther. 2002;5:165.

    Google Scholar 

  12. Doronin K, Toth K, Kuppuswamy M, et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol. 2000;74:6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramachandra M, Rahman A, Zou A, et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol. 2001;19:1035–1041.

    Article  CAS  PubMed  Google Scholar 

  14. Hansen RM, Libnoch JA . Remission of chronic lymphocytic leukemia after smallpox vaccination. Arch Intern Med. 1978;138:1137–1138.

    Article  CAS  PubMed  Google Scholar 

  15. Bousser J, Zittoun R . Prolonged spontaneous remission of chronic lymphoid leukemia]. Nouv Rev Fr Hematol. 1965;5:498–501.

    CAS  PubMed  Google Scholar 

  16. Vladimirskaia EB . A case of prolonged spontaneous remission in a patient with chronic lymphatic leukemia. Probl Gematol Pereliv Krovi. 1962;7:51–54.

    CAS  PubMed  Google Scholar 

  17. Weintraub LR . Lymphosarcoma. JAMA. 1969;210:1590–1591.

    Article  CAS  PubMed  Google Scholar 

  18. Sinkovics JG . Oncolytic viruses and viral oncolysates. Ann Immunol Hung. 1986;26:271–290.

    Google Scholar 

  19. Bluming AZ, Ziegler JL . Regression of Burkitt's lymphoma in association with measles infection. Lancet. 1971;2:105–106.

    Article  CAS  PubMed  Google Scholar 

  20. Taqi AM, Abdurrahman MB, Yakubu AM, Fleming AF . Regression of Hodgkin's disease after measles. Lancet. 1981;1:1112.

    Article  CAS  PubMed  Google Scholar 

  21. Bierman HR, Crile DM, Dod KS, et al. Remissions in leukemia of childhood following acute infectious disease: staphylococcus and streptococcus, varicella, and feline panleukopenia. Cancer. 1953;6:591–605.

    Article  CAS  PubMed  Google Scholar 

  22. Pelner L, Fowler GA, Nauts HC . Effects of concurrent infections and their toxins on the course of leukemia. Acta Med Scand. 1958;162:1–47.

    Google Scholar 

  23. London RE . Multiple myeloma: report of a case showing unusual remission lasting two years following severe hepatitis. Ann Intern Med. 1955;43:191–201.

    Article  CAS  PubMed  Google Scholar 

  24. Dock G . Influence of complicating diseases upon leukemia. Am J Med Sci. 1904;127:563–592.

    Article  Google Scholar 

  25. Bierman HR, Hammon W, Eddie BU, Meyer KF, Shimkin MB . The effect of viruses and bacterial infections on neoplastic diseases. Can Res. 1950;10:203–204.

    Google Scholar 

  26. Hernandez A . Observacion de un case de enfermedad de Hodgkin, con regresion de los sintomas e infartos ganglionares, post-sarampion. Rev Med Cubana. 1949;60:120–125.

    Google Scholar 

  27. De Pace NG . Sulla scomparsa di un enorme cancro vegetante del callo dell'utero senza cura chirurgica. Ginecologia. 1912;9:82–88.

    Google Scholar 

  28. Pack GT . Note of the experimental use of rabies vaccine for melanomatosis. Arch Dermtol Syphilol. 1950;62:694–695.

    Article  CAS  Google Scholar 

  29. Southam CM . Present status of oncolytic virus studies. Trans NY Acad Sci. 1960;22:657–673.

    Article  CAS  Google Scholar 

  30. Asada T . Treatment of human cancer with mumps virus. Cancer. 1974;34:1907–1928.

    Article  CAS  PubMed  Google Scholar 

  31. Yamanishi K, Takahashi M, Kurimura T, Ueda S, Minekawa Y . Studies on live mumps virus vaccine. 3. Evaluation of newly developed live mumps virus vaccine. Biken J. 1970;13:157–161.

    CAS  PubMed  Google Scholar 

  32. Moore AE . Carcinolytic viruses. In: RJC H, ed. Biological Approaches to Cancer Chemotherapy. New York: Academic Press; 1961: 365–370.

    Google Scholar 

  33. Harris JE, Sinkovics JG . The Immunology of Malignant Disease. St Louis, Mosby; 1976 pp. 180–182, 464–467, 475–478.

    Google Scholar 

  34. Hoster HA, Zanes RP, von Haam E . Studies in Hodgkin's syndrome. Can Res. 1949;9:473–480.

    CAS  Google Scholar 

  35. Southam CM, Moore AE . Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus. Cancer. 1952;5:1025–1034.

    Article  CAS  PubMed  Google Scholar 

  36. Huebner RJ, Rowe WP, Schatten WE, Smith RR, Thomas LB . Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer. 1956;9:1211–1218.

    Article  CAS  PubMed  Google Scholar 

  37. Russell SJ . Replicating vectors for gene therapy of cancer: risks, limitations and prospects. Eur J Cancer. 1994;30A:1165–1171.

    Article  CAS  PubMed  Google Scholar 

  38. Csatary L, Gergely P . Vaccine therapy of malignant tumors. Orv Hetil. 1990;131:2585–2588.

    CAS  PubMed  Google Scholar 

  39. Csatary LK, Eckhardt S, Bukosza I, et al. Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect Prev. 1993;17:619–627.

    CAS  PubMed  Google Scholar 

  40. Shimizu Y, Hasumi K, Okudaira Y, Yamanishi K, Takahashi M . Immunotherapy of advanced gynecologic cancer patients utilizing mumps virus. Cancer Detect Prev. 1988;12:487–495.

    CAS  PubMed  Google Scholar 

  41. Okuno Y, Asada T, Yamanishi K, et al. Studies on the use of mumps virus for treatment of human cancer. Biken J. 1978;21:37–49.

    CAS  PubMed  Google Scholar 

  42. Heicappell R, Schirrmacher V, von Hoegen P, Ahlert T, Appelhans B . Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. I. Parameters for optimal therapeutic effects. Int J Cancer. 1986;37:569–577.

    Article  CAS  PubMed  Google Scholar 

  43. Boone CW . Augmented immunogenicity of tumor cell homogenates infected with influenza virus. Can Res. 1974;47:394–400.

    Google Scholar 

  44. Ioannides CG, Platsoucas CD, Patenia R, et al. T-cell functions in ovarian cancer patients treated with viral oncolysates: I. Increased helper activity to immunoglobulins production. Anticancer Res. 1990;10:645–653.

    CAS  PubMed  Google Scholar 

  45. Horvath JC, Pritchard M, Vega V, Sinkovics JG . The viral oncolysate story and its expansion toward dendritic cell vaccines. In: Oncolytic Viruses as Cancer Therapeutics. Banff, Alberta; 2003: 45.

    Google Scholar 

  46. Lechner MS, Mack DH, Finicle AB, Crook T, Vousden KH, Laimins LA . Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. EMBO J. 1992;11:3045–3052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gannon JV, Lane DP . p53 and DNA polymerase alpha compete for binding to SV40T antigen. Nature. 1987;329:456–458.

    Article  CAS  PubMed  Google Scholar 

  48. Goodrum FD, Ornelles DA . The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle. J Virol. 1997;71:548–561.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hall AR, Dix BR, O'Carroll SJ, Braithwaite AW . p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med. 1998;4:1068–1072.

    Article  CAS  PubMed  Google Scholar 

  50. Turnell AS, Grand RJ, Gallimore PH . The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol. 1999;73:2074–2083.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Goodrum FD, Ornelles DA . p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol. 1998;72:9479–9490.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Harada JN, Berk AJ . p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol. 1999;73:5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kirn D, Hermiston T, McCormick F . ONYX-015: clinical data are encouraging. Nat Med. 1998;4:1341–1342.

    Article  CAS  PubMed  Google Scholar 

  54. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H . Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol. 1998;72:9470–9478.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Habib NA, Mitry RR, Sarraf CE . Assessment of growth inhibition and morphological changes in in vitro and in vivo hepatocellular carcinoma models post treatment with dl1520 adenovirus. Cancer Gene Ther. 2002;9:414–420.

    Article  CAS  PubMed  Google Scholar 

  56. Kenney S, Pagano JS . Viruses as oncolytic agents: a new age for “therapeutic” viruses? J Natl Cancer Inst. 1994;86:1185–1186.

    Article  CAS  PubMed  Google Scholar 

  57. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM . Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA. 1994;91:4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nemunaitis J, Ganly I, Khuri F, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 2000;60:6359–6366.

    CAS  PubMed  Google Scholar 

  59. Ganly I, Kirn D, Eckhardt G, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000;6:798–806.

    CAS  PubMed  Google Scholar 

  60. Nemunaitis J, Khuri F, Ganly I, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001;19:289–298.

    Article  CAS  PubMed  Google Scholar 

  61. Khuri FR, Nemunaitis J, Ganly I, et al. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000;6:879–885.

    Article  CAS  PubMed  Google Scholar 

  62. Vasey PA, Shulman LN, Campos S, et al. Phase I trial of intraperitoneal injection of the E1B-55-kD-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J Clin Oncol. 2002;20:1562–1569.

    CAS  PubMed  Google Scholar 

  63. Nemunaitis J, Cunningham C, Tong AW, et al. Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther. 2003;10:341–352.

    Article  CAS  PubMed  Google Scholar 

  64. Habib N, Salama H, Abd El Latif Abu Median A, et al. Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma. Cancer Gene Ther. 2002;9:254–259.

    Article  CAS  PubMed  Google Scholar 

  65. Reid T, Galanis E, Abbruzzese J . Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Therapy. 2001;8:1618–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nemunaitis J, Cunningham C, Buchanan A, et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Therapy. 2001;8:746–759.

    Article  CAS  PubMed  Google Scholar 

  67. Mulvihill S, Warren R, Venook A, et al. Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Therapy. 2001;8:308–315.

    Article  CAS  PubMed  Google Scholar 

  68. Reid T, Galanis E, Abbruzzese J, et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 2002;62:6070–6079.

    CAS  PubMed  Google Scholar 

  69. Hecht JR, Bedford R, Abbruzzese JL, et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res. 2003;9:555–561.

    CAS  PubMed  Google Scholar 

  70. Hamid O, Varterasian ML, Wadler S, et al. Phase II trial of intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21:1498–1504.

    Article  CAS  PubMed  Google Scholar 

  71. Makower D, Rozenblit A, Kaufman H, et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res. 2003;9:693–702.

    PubMed  Google Scholar 

  72. Bai M, Harfe B, Freimuth P . Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol. 1993;67:5198–5205.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–319.

    Article  CAS  PubMed  Google Scholar 

  74. Huang S, Kamata T, Takada Y, Ruggeri ZM, Nemerow GR . Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol. 1996;70:4502–4508.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bergelson JM, Cunningham JA, Droguett G . Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997;275:1320–1323.

    Article  CAS  PubMed  Google Scholar 

  76. Bergelson JM . Receptors mediating adenovirus attachment and internalization. Biochem Pharmacol. 1999;57:975–979.

    Article  CAS  PubMed  Google Scholar 

  77. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA. 1997;94:3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Davison E, Diaz RM, Hart IR, Santis G, Marshall JF . Integrin alpha5beta1-mediated adenovirus infection is enhanced by the integrin-activating antibody TS2/16. J Virol. 1997;71:6204–6207.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. FitzGerald DJ, Padmanabhan R, Pastan I, Willingham MC . Adenovirus-induced release of epidermal growth factor and pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell. 1983;32:607–617.

    Article  CAS  PubMed  Google Scholar 

  80. Seth P, Willingham MC, Pastan I . Adenovirus-dependent release of 51Cr from KB cells at an acidic pH. J Biol Chem. 1984;259:14350–14353.

    CAS  PubMed  Google Scholar 

  81. Greber UF, Webster P, Weber J, Helenius A . The role of the adenovirus protease on virus entry into cells. EMBO J. 1996;15:1766–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Greber UF, Suomalainen M, Stidwill RP, Boucke K, Ebersold MW, Helenius A . The role of the nuclear pore complex in adenovirus DNA entry. EMBO J. 1997;16:5998–6007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Leopold PL, Ferris B, Grinberg I, Worgall S, Hackett NR, Crystal RG . Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum Gene Ther. 1998;9:367–378.

    Article  CAS  PubMed  Google Scholar 

  84. Wang K, Huang S, Kapoor-Munshi A, Nemerow G . Adenovirus internalization and infection require dynamin. J Virol. 1998;72:3455–3458.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF . Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol. 1999;144:657–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wisnivesky JP, Leopold PL, Crystal RG . Specific binding of the adenovirus capsid to the nuclear envelope. Hum Gene Ther. 1999;10:2187–2195.

    Article  CAS  PubMed  Google Scholar 

  87. Leopold PL, Kreitzer G, Miyazawa N . Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum Gene Ther. 2000;11:151–165.

    Article  CAS  PubMed  Google Scholar 

  88. Saphire AC, Guan T, Schirmer EC, Nemerow GR, Gerace L . Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J Biol Chem. 2000;275:4298–4304.

    Article  CAS  PubMed  Google Scholar 

  89. Yeh P, Perricaudet M . Advances in adenoviral vectors: from genetic engineering to their biology. FASEB J. 1997;11:615–623.

    Article  CAS  PubMed  Google Scholar 

  90. Wold WS, Doronin K, Toth K, Kuppuswamy M, Lichtenstein DL, Tollefson AE . Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic. Curr Opin Immunol. 1999;11:380–386.

    Article  CAS  PubMed  Google Scholar 

  91. Mahr JA, Gooding LR . Immune evasion by adenoviruses. Immunol Rev. 1999;168:121–130.

    Article  CAS  PubMed  Google Scholar 

  92. Flint J, Shenk T . Viral transactivating proteins. Annu Rev Genet. 1997;31:177–212.

    Article  CAS  PubMed  Google Scholar 

  93. Nemunaitis J . Oncolytic viruses. Invest New Drugs. 1999;17:375–386.

    Article  CAS  PubMed  Google Scholar 

  94. Rancourt C, Piche A, Gomez-Navarro J, et al. Interleukin-6 modulated conditionally replicative adenovirus as an antitumor/cytotoxic agent for cancer therapy. Clin Cancer Res. 1999;5:43–50.

    CAS  PubMed  Google Scholar 

  95. Howe JA, Demers GW, Johnson DE, et al. Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy. Mol Ther. 2000;2:485–495.

    Article  CAS  PubMed  Google Scholar 

  96. Kratzer F, Rosorius O, Heger P, et al. The adenovirus type 5 E1B-55K oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene. 2000;19:850–857.

    Article  CAS  PubMed  Google Scholar 

  97. Wold WS, Hermiston TW, Tollefson AE . Adenovirus proteins that subvert host defenses. Trends Microbiol. 1994;2:437–443.

    Article  CAS  PubMed  Google Scholar 

  98. Wold WS, Tollefson AE, Hermiston TW . E3 transcription unit of adenovirus. Curr Top Microbiol Immunol. 1995;199(Part 1):237–274.

    CAS  PubMed  Google Scholar 

  99. Horwitz MS, Tufariello J, Grunhaus A, Fejer G . Model systems for studying the effects of adenovirus E3 genes on virulence in vivo. Curr Top Microbiol Immunol. 1995;199(Part 3):195–211.

    CAS  PubMed  Google Scholar 

  100. Lee MG, Abina MA, Haddada H, Perricaudet M . The constitutive expression of the immunomodulatory gp19k protein in E1-, E3-adenoviral vectors strongly reduces the host cytotoxic T cell response against the vector. Gene Therapy. 1995;2:256–262.

    CAS  PubMed  Google Scholar 

  101. Bett AJ, Haddara W, Prevec L, Graham FL . An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA. 1994;91:8802–8806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ilan Y, Droguett G, Chowdhury NR . Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc Natl Acad Sci USA. 1997;94:2587–2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Braithwaite AW, Russell IA . Induction of cell death by adenoviruses. Apoptosis. 2001;6:359–370.

    Article  CAS  PubMed  Google Scholar 

  104. Tollefson AE, Scaria A, Hermiston TW, Ryerse JS, Wold LJ, Wold WS . The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol. 1996;70:2296–2306.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. McCart JA, Puhlmann M, Lee J . Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Therapy. 2000;7:1217–1223.

    Article  CAS  PubMed  Google Scholar 

  106. Hawkins LK, Hermiston T . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region. Gene Therapy. 2001;8:1142–1148.

    Article  CAS  PubMed  Google Scholar 

  107. Wang Y, Hallden G, Hill R, et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol. 2003;21:1328–1335.

    Article  CAS  PubMed  Google Scholar 

  108. Elkon KB, Liu CC, Gall JG, et al. Tumor necrosis factor alpha plays a central role in immune-mediated clearance of adenoviral vectors. Proc Natl Acad Sci USA. 1997;94:9814–9819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Benihoud K, Saggio I, Opolon P . Efficient, repeated adenovirus-mediated gene transfer in mice lacking both tumor necrosis factor alpha and lymphotoxin alpha. J Virol. 1998;72:9514–9525.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Alcami A, Koszinowski UH . Viral mechanisms of immune evasion. Immunol Today. 2000;21:447–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nash P, Barrett J, Cao JX, et al. Immunomodulation by viruses: the myxoma virus story. Immunol Rev. 1999;168:103–120.

    Article  CAS  PubMed  Google Scholar 

  112. Smith GL, Symons JA, Khanna A, Vanderplasschen A, Alcami A . Vaccinia virus immune evasion. Immunol Rev. 1997;159:137–154.

    Article  CAS  PubMed  Google Scholar 

  113. Smith VP, Bryant NA, Alcami A . Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol. 2000;81:1223–1230.

    Article  CAS  PubMed  Google Scholar 

  114. Spriggs MK . One step ahead of the game: viral immunomodulatory molecules. Annu Rev Immunol. 1996;14:101–130.

    Article  CAS  PubMed  Google Scholar 

  115. Saraiva M, Alcami A . CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J Virol. 2001;75:226–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nemunaitis J, Edelman J . Selectively replicating viral vectors. Cancer Gene Ther. 2002;9:987–1000.

    Article  CAS  PubMed  Google Scholar 

  117. Reid T, Sze D, Galanis E . Intra-arterial administration of a replication-selective adenovirus ONYX-015 in patients with colorectal carcinoma metastatic to the liver: safety, feasibility and biological activity. (abstr 793). Proc Am Soc Clin Oncol. 2003;22:198.

    Google Scholar 

  118. Rahman A, Tsai V, Goudreau A . Specific depletion of human anti-adenovirus antibodies facilitates transduction in an in vivo model for systemic gene therapy. Mol Ther. 2001;3:768–778.

    Article  CAS  PubMed  Google Scholar 

  119. Li E, Stupack D, Bokoch GM, Nemerow GR . Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol. 1998;72:8806–8812.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wolff G, Worgall S, van Rooijen N, Song WR, Harvey BG, Crystal RG . Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol. 1997;71:624–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Biewenga J, van der Ende MB, Krist LF, Borst A, Ghufron M, van Rooijen N . Macrophage depletion in the rat after intraperitoneal administration of liposome-encapsulated clodronate: depletion kinetics and accelerated repopulation of peritoneal and omental macrophages by administration of Freund's adjuvant. Cell Tissue Res. 1995;280:189–196.

    CAS  PubMed  Google Scholar 

  122. McCuskey RS, McCuskey PA, Urbaschek R, Urbaschek B . Kupffer cell function in host defense. Rev Infect Dis. 1987;9(Suppl 5):S616–619.

    CAS  PubMed  Google Scholar 

  123. Huitinga I, Ruuls SR, Jung S, Van Rooijen N, Hartung HP, Dijkstra CD . Macrophages in T cell line-mediated, demyelinating, and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats. Clin Exp Immunol. 1995;100:344–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Laman JD, Kors N, Van Rooijen Nz, Claassen E . Mechanism of follicular trapping: localization of immune complexes and cell remnants after elimination and repopulation of different spleen cell populations. Immunology. 1990;71:57–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Pinto AJ, Stewart D, van Rooijen N, Morahan PS . Selective depletion of liver and splenic macrophages using liposomes encapsulating the drug dichloromethylene diphosphonate: effects on antimicrobial resistance. J Leukocyte Biol. 1991;49:579–586.

    Article  CAS  PubMed  Google Scholar 

  126. Qian Q, Jutila MA, Van Rooijen N, Cutler JE . Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol. 1994;152:5000–5008.

    CAS  PubMed  Google Scholar 

  127. Tschaikowsky K, Brain JD . Effects of liposome-encapsulated dichloromethylene diphosphonate on macrophage function and endotoxin-induced mortality. Biochim Biophys Acta. 1994;1222:323–330.

    Article  CAS  PubMed  Google Scholar 

  128. Van Rooijen N . The liposome-mediated macrophage ‘suicide’ technique. J Immunol Methods. 1989;124:1–6.

    Article  CAS  PubMed  Google Scholar 

  129. van Rooijen N, Kors N, Kraal G . Macrophage subset repopulation in the spleen: differential kinetics after liposome-mediated elimination. J Leukocyte Biol. 1989;45:97–104.

    Article  CAS  PubMed  Google Scholar 

  130. Van Rooijen N, Kors N, vd Ende M, Dijkstra CD . Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res. 1990;260:215–222.

    Article  CAS  PubMed  Google Scholar 

  131. Van Rooijen N, Sanders A . Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods. 1994;174:83–93.

    Article  CAS  PubMed  Google Scholar 

  132. Van Rooijen N, Sanders A . Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate, propamidine, and ethylenediaminetetraacetic acid. Hepatology. 1996;23:1239–1243.

    Article  CAS  PubMed  Google Scholar 

  133. Vreden SG, Sauerwein RW, Verhave JP, Van Rooijen N, Meuwissen JH, Van Den Broek MF . Kupffer cell elimination enhances development of liver schizonts of Plasmodium berghei in rats. Infect Immun. 1993;61:1936–1939.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lorence RM, Roberts MS, Groene WS, Rabin H . Replication-competent, oncolytic Newcastle disease virus for cancer therapy. Monogr Virol (Basel, Karger). 2001;22:160–182.

    Article  CAS  Google Scholar 

  135. Jordan MA, Toso RJ, Thrower D, Wilson L . Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA. 1993;90:9552–9556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Long BH, Fairchild CR . Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res. 1994;54:4355–4361.

    CAS  PubMed  Google Scholar 

  137. Adams JD, Flora KP, Goldspiel BR, Wilson JW, Arbuck SG, Finley R . Taxol: a history of pharmaceutical development and current pharmaceutical concerns. J Natl Cancer Inst Monogr. 1993;15:141–147.

    Google Scholar 

  138. Kohn KW, Jackman J, O'Connor PM . Cell cycle control and cancer chemotherapy. J Cell Biochem. 1994;54:440–452.

    Article  CAS  PubMed  Google Scholar 

  139. Edelman MJ, Gandara DR . Promising new agents in the treatment of non-small cell lung cancer. Cancer Chemother Pharmacol. 1996;37:385–393.

    Article  CAS  PubMed  Google Scholar 

  140. Ikeda K, Ichikawa T, Wakimoto H, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med. 1999;5:881–887.

    Article  CAS  PubMed  Google Scholar 

  141. Li Y, Pong RC, Bergelson JM, et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 1999;59:325–330.

    CAS  PubMed  Google Scholar 

  142. Miller CR, Buchsbaum DJ, Reynolds PN, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res. 1998;58:5738–5748.

    CAS  PubMed  Google Scholar 

  143. Fechner H, Wang X, Wang H, et al. Trans-complementation of vector replication versus Coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Therapy. 2000;7:1954–1968.

    Article  CAS  PubMed  Google Scholar 

  144. Cripe TP, Dunphy EJ, Holub AD, et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res. 2001;61:2953–2960.

    CAS  PubMed  Google Scholar 

  145. Mori T, Arakawa H, Tokino T, Mineura K, Nakamura Y . Significant increase of adenovirus infectivity in glioma cell lines by extracellular domain of hCAR. Oncol Res. 1999;11:513–521.

    CAS  PubMed  Google Scholar 

  146. Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998;72:9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kelly FJ, Miller CR, Buchsbaum DJ, et al. Selectivity of TAG-72-targeted adenovirus gene transfer to primary ovarian carcinoma cells versus autologous mesothelial cells in vitro. Clin Cancer Res. 2000;6:4323–4333.

    CAS  PubMed  Google Scholar 

  148. Vanderkwaak TJ, Wang M, Gomez-Navarro J, et al. An advanced generation of adenoviral vectors selectively enhances gene transfer for ovarian cancer gene therapy approaches. Gynecol Oncol. 1999;74:227–234.

    Article  CAS  PubMed  Google Scholar 

  149. Kasono K, Blackwell JL, Douglas JT, et al. Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res. 1999;5:2571–2579.

    CAS  PubMed  Google Scholar 

  150. Hemmi S, Geertsen R, Mezzacasa A, Peter I, Dummer R . The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther. 1998;9:2363–2373.

    Article  CAS  PubMed  Google Scholar 

  151. Li D, Duan L, Freimuth P, O'Malley Jr BW . Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin Cancer Res. 1999;5:4175–4181.

    CAS  PubMed  Google Scholar 

  152. Khuu H, Conner M, Vanderkwaak T, et al. Detection of Coxsackie-adenovirus receptor (CAR) immunoreactivity in ovarian tumors of epithelial derivation. Appl Immunohistochem Mol Morphol. 1999;7:266–270.

    Google Scholar 

  153. Heinicke T, Hemmi S, Mauer D, Sauerbruch T, Caselman WH . Transduction efficiency of adenoviral vectors in colorectal cancer cells is determined by the presence of the coxsackie adenovirus receptor. Mol Ther. 2000;1:S60.

    Google Scholar 

  154. Dodson J, DeMarzo A, Schoenberg M, et al. Coxsackie adenovirus receptor immunohistochemical staining in superficial bladder tumors. In: American Society of Gene Therapy Third Annual Meeting. Denver, CO: Mol Ther. 2000: S59.

    Google Scholar 

  155. Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J, Hsieh JT . The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res. 2000;60:5031–5036.

    CAS  PubMed  Google Scholar 

  156. Anders M, Ding RX, Lipner EM, Balmain A, McCormick F, Korn WM . Inhibition of the MAPK pathway up-regulates the human Coxsackie and adenovirus receptor (CAR) and increases the infectivity of cancer cells with adenoviruses. Proc Am Assoc Cancer Res. 2001;42:703.

    Google Scholar 

  157. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT . Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol. 1996;14:1574–1578.

    Article  CAS  PubMed  Google Scholar 

  158. Blackwell JL, Miller CR, Douglas JT, et al. Retargeting to EGFR enhances adenovirus infection efficiency of squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1999;125:856–863.

    Article  CAS  PubMed  Google Scholar 

  159. Haisma HJ, Grill J, Curiel DT, et al. Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Ther. 2000;7:901–904.

    Article  CAS  PubMed  Google Scholar 

  160. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT . Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol. 2000;74:6875–6884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Grill J, Van Beusechem VW, Van Der Valk P, et al. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin Cancer Res. 2001;7:641–650.

    CAS  PubMed  Google Scholar 

  162. Haisma HJ, Pinedo HM, Rijswijk A, et al. Tumor-specific gene transfer via an adenoviral vector targeted to the pan-carcinoma antigen EpCAM. Gene Therapy. 1999;6:1469–1474.

    Article  CAS  PubMed  Google Scholar 

  163. Goldman CK, Rogers BE, Douglas JT, et al. Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor. Cancer Res. 1997;57:1447–1451.

    CAS  PubMed  Google Scholar 

  164. Rogers BE, Douglas JT, Sosnowski BA, et al. Enhanced in vivo gene delivery to human ovarian cancer xenografts utilizing a tropism-modified adenovirus vector. Tumor Targeting. 1998;3:25–31.

    CAS  Google Scholar 

  165. Rancourt C, Rogers BE, Sosnowski BA, et al. Basic fibroblast growth factor enhancement of adenovirus-mediated delivery of the herpes simplex virus thymidine kinase gene results in augmented therapeutic benefit in a murine model of ovarian cancer. Clin Cancer Res. 1998;4:2455–2461.

    CAS  PubMed  Google Scholar 

  166. Gu DL, Gonzalez AM, Printz MA, et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res. 1999;59:2608–2614.

    CAS  PubMed  Google Scholar 

  167. Printz MA, Gonzalez AM, Cunningham M, et al. Fibroblast growth factor 2-retargeted adenoviral vectors exhibit a modified biolocalization pattern and display reduced toxicity relative to native adenoviral vectors. Hum Gene Ther. 2000;11:191–204.

    Article  CAS  PubMed  Google Scholar 

  168. Rogers BE, Douglas JT, Ahlem C, Buchsbaum DJ, Frincke J, Curiel DT . Use of a novel cross-linking method to modify adenovirus tropism. Gene Therapy. 1997;4:1387–1392.

    Article  CAS  PubMed  Google Scholar 

  169. Grandis JR, Melhem MF, Barnes EL, Tweardy DJ . Quantitative immunohistochemical analysis of transforming growth factor-alpha and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer. 1996;78:1284–1292.

    Article  CAS  Google Scholar 

  170. Alemany R, Suzuki K, Curiel DT . Blood clearance rates of adenovirus type 5 in mice. J Gen Virol. 2000;81:2605–2609.

    Article  CAS  PubMed  Google Scholar 

  171. Tao N, Gao GP, Parr M, et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther. 2001;3:28–35.

    Article  CAS  PubMed  Google Scholar 

  172. Wu H, Seki T, Dmitriev I, et al. Double modification of adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus receptor-independent gene transfer efficiency. Hum Gene Ther. 2002;13:1647–1653.

    Article  CAS  PubMed  Google Scholar 

  173. Bucheit AD, Kumar S, Grote DM, et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol Ther. 2003;7:62–72.

    Article  CAS  PubMed  Google Scholar 

  174. Peng KW, Donovan KA, Schneider U, Cattaneo R, Lust JA, Russell SJ . Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood. 2003;101:2557–2562.

    Article  CAS  PubMed  Google Scholar 

  175. Schneider U, von Messling V, Devaux P, Cattaneo R . Efficiency of measles virus entry and dissemination through different receptors. J Virol. 2002;76:7460–7467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Stojdl DF, Lichty B, Knowles S, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 2000;6:821–825.

    Article  CAS  PubMed  Google Scholar 

  177. Bangma CH . Targeting of adenoviral vectors for gene therapy of prostate cancer. Prostate Cancer Prostatic Dis. 2000;3:308–312.

    Article  CAS  PubMed  Google Scholar 

  178. Barnett BG, Tillman BW, Curiel DT, Douglas JT . Dual targeting of adenoviral vectors at the levels of transduction and transcription enhances the specificity of gene expression in cancer cells. Mol Ther. 2002;6:377–385.

    Article  CAS  PubMed  Google Scholar 

  179. Liu FF . Novel gene therapy approach for nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12:505–515.

    Article  CAS  PubMed  Google Scholar 

  180. Logg CR, Logg A, Matusik RJ, Bochner BH, Kasahara N . Tissue-specific transcriptional targeting of a replication-competent retroviral vector. J Virol. 2002;76:12783–12791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nahde T, Muller K, Fahr A, Muller R, Brusselbach S . Combined transductional and transcriptional targeting of melanoma cells by artificial virus-like particles. J Gene Med. 2001;3:353–361.

    Article  CAS  PubMed  Google Scholar 

  182. Qiao J, Doubrovin M, Sauter BV, et al. Tumor-specific transcriptional targeting of suicide gene therapy. Gene Therapy. 2002;9:168–175.

    Article  CAS  PubMed  Google Scholar 

  183. Savontaus MJ, Sauter BV, Huang TG, Woo SL . Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Therapy. 2002;9:972–979.

    Article  CAS  PubMed  Google Scholar 

  184. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E . Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA. 2000;97:6803–6808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. DeWeese TL, van der Poel H, Li S, et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 2001;61:7464–7472.

    CAS  PubMed  Google Scholar 

  186. Hallenbeck PL, Chang YN, Hay C, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther. 1999;10:1721–1733.

    Article  CAS  PubMed  Google Scholar 

  187. Lee F, Mulligan R, Berg P, Ringold G . Glucocorticoids regulate expression of dihydrofolate reductase cDNA in mouse mammary tumour virus chimaeric plasmids. Nature. 1981;294:228–232.

    Article  CAS  PubMed  Google Scholar 

  188. Walther W, Wendt J, Stein U . Employment of the mdr1 promoter for the chemotherapy-inducible expression of therapeutic genes in cancer gene therapy. Gene Therapy. 1997;4:544–552.

    Article  CAS  PubMed  Google Scholar 

  189. Vile RG, Hart IR . In vitro and in vivo targeting of gene expression to melanoma cells. Cancer Res. 1993;53:962–967.

    CAS  PubMed  Google Scholar 

  190. Morelli AE, Larregina AT, Smith-Arica J, et al. Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity. J Gen Virol. 1999;80(Part 3):571–583.

    Article  CAS  PubMed  Google Scholar 

  191. Gao Z, Fields JZ, Boman BM . Tumor-specific expression of anti-mdr1 ribozyme selectively restores chemosensitivity in multidrug-resistant colon-adenocarcinoma cells. Int J Cancer. 1999;82:346–352.

    Article  CAS  PubMed  Google Scholar 

  192. Hernandez-Alcoceba R, Pihalja M, Wicha MS, Clarke MF . A novel, conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum Gene Ther. 2000;11:2009–2024.

    Article  CAS  PubMed  Google Scholar 

  193. Steele C, Sacks PG, Adler-Storthz K, Shillitoe EJ . Effect on cancer cells of plasmids that express antisense RNA of human papillomavirus type 18. Cancer Res. 1992;52:4706–4711.

    CAS  PubMed  Google Scholar 

  194. Thompson EM, Nagata S, Tsuji FI . Vargula hilgendorfii luciferase: a secreted reporter enzyme for monitoring gene expression in mammalian cells. Gene. 1990;96:257–262.

    Article  CAS  PubMed  Google Scholar 

  195. Gibson SA, Pellenz C, Hutchison RE, Davey FR, Shillitoe EJ . Induction of apoptosis in oral cancer cells by an anti-bcl-2 ribozyme delivered by an adenovirus vector. Clin Cancer Res. 2000;6:213–222.

    CAS  PubMed  Google Scholar 

  196. Kim E, Kim JH, Shin HY, et al. Ad-mTERT-delta19, a conditional replication-competent adenovirus driven by the human telomerase promoter, selectively replicates in and elicits cytopathic effect in a cancer cell-specific manner. Hum Gene Ther. 2003;14:1415–1428.

    Article  CAS  PubMed  Google Scholar 

  197. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 1997;57:2559–2563.

    CAS  PubMed  Google Scholar 

  198. Kawakami K, Kawakami M, Joshi BH, Puri RK . Interleukin-13 receptor-targeted cancer therapy in an immunodeficient animal model of human head and neck cancer. Cancer Res. 2001;61:6194–6200.

    CAS  PubMed  Google Scholar 

  199. Husak P, Ho K, Aimi J, et al. Circulating oncolytic and wild type adenovirus levels in clinical trial patients treated with CG7870. In: Ther M, ed. Sixth Annual Meeting of the American Society of Gene Therapy. Washington, DC: Elsevier; 2003: S315.

    Google Scholar 

  200. DeWeese T, Arterbery E, Michalski J, et al. A Phase I/II dose escalation trial of the intra prostatic injection of CG7870, a prostate specific antigen-dependent oncolytic adenovirus in patients with locally recurrent prostate cancer following definitive radiotherapy. In: Ther M, ed. Sixth Annual Meeting of the American Society of Gene Therapy. Washington, DC: Elsevier; 2003: S446.

    Google Scholar 

  201. Li Y, McCadden J, Ferrer F, et al. Prostate-specific expression of the diphtheria toxin A chain (DT-A): studies of inducibility and specificity of expression of prostate-specific antigen promoter-driven DT-A adenoviral-mediated gene transfer. Cancer Res. 2002;62:2576–2582.

    CAS  PubMed  Google Scholar 

  202. Pang S . Targeting and eradicating cancer cells by a prostate-specific vector carrying the diphtheria toxin A gene. Cancer Gene Ther. 2000;7:991–996.

    Article  CAS  PubMed  Google Scholar 

  203. Lee G, Hong HJ, You YO, Bang EH, Kook JK, Min BM . Effect of p53 gene transfer on the cell proliferation and cell cycle progression in a human oral cancer cell line with p53 mutations. Int J Oral Biol. 1998;23:189–199.

    Google Scholar 

  204. Robert MS, Lorence RM, Gronen WS, et al. Treatment of neoplasms with viruses. In: International Patent Publication No 9/18799. 1999.

  205. Pecora AL, Rizvi N, Cohen GI, et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol. 2002;20:2251–2266.

    Article  CAS  PubMed  Google Scholar 

  206. Schirrmacher V, Ahlert T, Probstle T, et al. Immunization with virus-modified tumor cells. Semin Oncol. 1998;25:677–696.

    CAS  PubMed  Google Scholar 

  207. Batliwalla FM, Bateman BA, Serrano D, et al. A 15-year follow-up of AJCC stage III malignant melanoma patients treated postsurgically with Newcastle disease virus (NDV) oncolysate and determination of alterations in the CD8T cell repertoire. Mol Med. 1998;4:783–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cassel WA, Garrett RE . Newcastle disease virus as an antineoplastic agent. Cancer. 1965;18:863–868.

    Article  CAS  PubMed  Google Scholar 

  209. Cassel WA, Murray DR, Phillips HS . A phase II study on the postsurgical management of stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer. 1983;52:856–860.

    Article  CAS  PubMed  Google Scholar 

  210. Cassel WA, Murray DR . A ten-year follow-up on stage II malignant melanoma patients treated postsurgically with Newcastle disease virus oncolysate. Med Oncol Tumor Pharmacother. 1992;9:169–171.

    CAS  PubMed  Google Scholar 

  211. Cassel WA, Murray DR . Treatment of stage II malignant melanoma patients with a Newcastle disease virus oncolysate. Nat Immun Cell Growth Regul. 1988;7:351–352.

    CAS  PubMed  Google Scholar 

  212. Sinkovics J, Horvath J . New developments in the virus therapy of cancer: a historical review. Intervirology. 1993;36:193–214.

    Article  CAS  PubMed  Google Scholar 

  213. Schlag P, Manasterski M, Gerneth T, et al. Active specific immunotherapy with Newcastle-disease-virus-modified autologous tumor cells following resection of liver metastases in colorectal cancer. First evaluation of clinical response of a phase II trial. Cancer Immunol Immunother. 1992;35:325–330.

    Article  CAS  PubMed  Google Scholar 

  214. Kirchner HH, Anton P, Atzpodien J . Adjuvant treatment of locally advanced renal cancer with autologous virus-modified tumor vaccines. World J Urol. 1995;13:171–173.

    Article  CAS  PubMed  Google Scholar 

  215. Haas C, Strauss G, Moldenhauer G, Iorio RM, Schirrmacher V . Bispecific antibodies increase T-cell stimulatory capacity in vitro of human autologous virus-modified tumor vaccine. Clin Cancer Res. 1998;4:721–730.

    CAS  PubMed  Google Scholar 

  216. Lorence RM, Reichard KW, Katubig BB, et al. Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy. J Natl Cancer Inst. 1994;86:1228–1233.

    Article  CAS  PubMed  Google Scholar 

  217. Lorence RM, Katubig BB, Reichard KW, et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Res. 1994;54:6017–6021.

    CAS  PubMed  Google Scholar 

  218. Lorence RM, Roberts MS, Groene WS, et al. Regression of human tumor xenografts following intravenous treatment using PV70, a naturally attenuated oncolytic strain of Newcastle disease virus (Abstract 2442). Proc Am Assoc Cancer Res. 2001;42:454.

    Google Scholar 

  219. Mineta T, Rabkin SD, Martuza RL . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res. 1994;54:3963–3966.

    CAS  PubMed  Google Scholar 

  220. Chase M, Chung RY, Chiocca EA . An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nat Biotechnol. 1998;16:444–448.

    Article  CAS  PubMed  Google Scholar 

  221. Boviatsis EJ, Scharf JM, Chase M, et al. Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Therapy. 1994;1:323–331.

    CAS  PubMed  Google Scholar 

  222. Varghese S, Rabkin SD . Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002;9:967–978.

    Article  CAS  PubMed  Google Scholar 

  223. Chou J, Kern ER, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science. 1990;250:1262–1266.

    Article  CAS  PubMed  Google Scholar 

  224. Chou J, Roizman B . The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci USA. 1992;89:3266–3270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. McKie EA, MacLean AR, Lewis AD, et al. Selective in vitro replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants in primary human CNS tumours — evaluation of a potentially effective clinical therapy. Br J Cancer. 1996;74:745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Martuza RL . Act locally, think globally. Nat Med. 1997;3:1323.

    Article  CAS  PubMed  Google Scholar 

  227. Alemany R, Gomez-Manzano C, Balague C, et al. Gene therapy for gliomas: molecular targets, adenoviral vectors, and oncolytic adenoviruses. Exp Cell Res. 1999;252:1–12.

    Article  CAS  PubMed  Google Scholar 

  228. Pennisi E . Will a twist of viral fate lead to a new cancer treatment? Science. 1996;274:342–343.

    Article  CAS  PubMed  Google Scholar 

  229. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1:938–943.

    Article  CAS  PubMed  Google Scholar 

  230. Andreansky SS, He B, Gillespie GY, et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci USA. 1996;93:11313–11318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Chambers R, Gillespie GY, Soroceanu L, et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a SCID mouse model of human malignant glioma. Proc Natl Acad Sci USA. 1995;92:1411–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kesari S, Randazzo BP, Valyi-Nagy T, et al. Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Lab Invest. 1995;73:636–648.

    CAS  PubMed  Google Scholar 

  233. Lambright ES, Kang EH, Force S, et al. Effect of preexisting anti-herpes immunity on the efficacy of herpes simplex viral therapy in a murine intraperitoneal tumor model. Mol Ther. 2000;2:387–393.

    Article  CAS  PubMed  Google Scholar 

  234. Randazzo BP, Bhat MG, Kesari S, Fraser NW, Brown SM . Treatment of experimental subcutaneous human melanoma with a replication-restricted herpes simplex virus mutant. J Invest Dermatol. 1997;108:933–937.

    Article  CAS  PubMed  Google Scholar 

  235. Toda M, Rabkin SD, Martuza RL . Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1. Hum Gene Ther. 1998;9:2177–2185.

    Article  CAS  PubMed  Google Scholar 

  236. Toda M, Rabkin SD, Kojima H, Martuza RL . Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther. 1999;10:385–393.

    Article  CAS  PubMed  Google Scholar 

  237. Yoon SS, Carroll NM, Chiocca EA, Tanabe KK . Cancer gene therapy using a replication-competent herpes simplex virus type 1 vector. Ann Surg. 1998;228:366–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Coukos G, Makrigiannakis A, Kang EH, et al. Use of carrier cells to deliver a replication-selective herpes simplex virus-1 mutant for the intraperitoneal therapy of epithelial ovarian cancer. Clin Cancer Res. 1999;5:1523–1537.

    CAS  PubMed  Google Scholar 

  239. Lambright ES, Caparrelli DJ, Abbas AE, et al. Oncolytic therapy using a mutant type-1 herpes simplex virus and the role of the immune system. Ann Thorac Surg. 1999;68:1756–1760 (discussion 1761–1752).

    Article  CAS  PubMed  Google Scholar 

  240. Cozzi PJ, Burke PB, Bhargav A, et al. Oncolytic viral gene therapy for prostate cancer using two attenuated, replication-competent, genetically engineered herpes simplex viruses. Prostate. 2002;53:95–100.

    Article  CAS  PubMed  Google Scholar 

  241. Coukos G, Rubin SC, Molnar-Kimber KL . Application for recombinant herpes simplex virus-1 (HSV-1) for the treatment of malignancies outside the central nervous system. Gene Ther Mol Biol. 1999;3:79–89.

    Google Scholar 

  242. Kucharczuk JC, Randazzo B, Chang MY, et al. Use of a “replication-restricted” herpes virus to treat experimental human malignant mesothelioma. Cancer Res. 1997;57:466–471.

    CAS  PubMed  Google Scholar 

  243. Toyoizumi T, Mick R, Abbas AE, Kang EH, Kaiser LR, Molnar-Kimber KL . Combined therapy with chemotherapeutic agents and herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) in human non-small cell lung cancer. Hum Gene Ther. 1999;10:3013–3029.

    Article  CAS  PubMed  Google Scholar 

  244. Advani SJ, Chung SM, Yan SY, et al. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors. Cancer Res. 1999;59:2055–2058.

    CAS  PubMed  Google Scholar 

  245. Carroll NM, Chiocca EA, Takahashi K, Tanabe KK . Enhancement of gene therapy specificity for diffuse colon carcinoma liver metastases with recombinant herpes simplex virus. Ann Surg. 1996;224:323–329 (discussion 329–330).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Bennett JJ, Delman KA, Burt BM, et al. Comparison of safety, delivery, and efficacy of two oncolytic herpes viruses (G207 and NV1020) for peritoneal cancer. Cancer Gene Ther. 2002;9:935–945.

    Article  CAS  PubMed  Google Scholar 

  247. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy. 2000;7:867–874.

    Article  CAS  PubMed  Google Scholar 

  248. Rampling R, Cruickshank G, Papanastassiou V, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recur-rent malignant glioma. Gene Therapy. 2000;7:859–866.

    Article  CAS  PubMed  Google Scholar 

  249. Papanastassiou V, Rampling R, Fraser M, et al. The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Therapy. 2002;9:398–406.

    Article  CAS  PubMed  Google Scholar 

  250. MacKie RM, Stewart B, Brown SM . Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet. 2001;357:525–526.

    Article  CAS  PubMed  Google Scholar 

  251. Han ZQ, Hu J, Liu B, et al. Combination of OncoVEX with chemotherapy for cancer treatment. Mol Ther. 2003;7:S288.

    Google Scholar 

  252. Liu B, Robinson M, Han Z, et al. Optimised oncolytic herpes simplex virus for cancer treatment. Mol Ther. 2003;7:S293.

    Google Scholar 

  253. Hu J, McNeish I, Shorrock C, et al. A phase I clinical trial with OncoVEXGMCSF. Mol Ther. 2003;7:S447.

    Google Scholar 

  254. Meignier B, Longnecker R, Roizman B . In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis. 1988;158:602–614.

    Article  CAS  PubMed  Google Scholar 

  255. Wong RJ, Kim SH, Joe JK, Shah JP, Johnson PA, Fong Y . Effective treatment of head and neck squamous cell carcinoma by an oncolytic herpes simplex virus. J Am Coll Surg. 2001;193:12–21.

    Article  CAS  PubMed  Google Scholar 

  256. Meignier B, Martin B, Whitley RJ, Roizman B . In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020. II. Studies in immunocompetent and immunosuppressed owl monkeys (Aotus trivirgatus). J Infect Dis. 1990;162:313–321.

    Article  CAS  PubMed  Google Scholar 

  257. Todo T, Ebright MI, Fong T, et al. Oncolytic herpes simplex virus (G207) therapy: from basic to clinical. In: Maruta H, ed. Tumor-Suppressing Viruses, Genes, and Drugs. San Diego: Academic Press; 2002: 45–75.

    Google Scholar 

  258. Coen DM, Goldstein DJ, Weller SK . Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir. Antimicrob Agents Chemother. 1989;33:1395–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. MacLean AR, ul-Fareed M, Robertson L, Harland J, Brown SM . Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol. 1991;72(Part 3):631–639.

    Article  CAS  PubMed  Google Scholar 

  260. Robinson M, Liu B, Han Z, et al. ICP34.5 deleted herpes simplex virus 1 with enhanced oncolytic and anti-tumor properties: preclinical studies. Mol Ther. 2002;5:S319.

    Google Scholar 

  261. Todo T, Rabkin SD, Sundaresan P, et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther. 1999;10:2741–2755.

    Article  CAS  PubMed  Google Scholar 

  262. Endo T, Toda M, Watanabe M, et al. In situ cancer vaccination with a replication-conditional HSV for the treatment of liver metastasis of colon cancer. Cancer Gene Ther. 2002;9:142–148.

    Article  CAS  PubMed  Google Scholar 

  263. Toda M, Martuza RL, Kojima H, Rabkin SD . In situ cancer vaccination: an IL-12 defective vector/replication-competent herpes simplex virus combination induces local and systemic antitumor activity. J Immunol. 1998;160:4457–4464.

    CAS  PubMed  Google Scholar 

  264. Carew JF, Kooby DA, Halterman MW, Kim SH, Federoff HJ, Fong Y . A novel approach to cancer therapy using an oncolytic herpes virus to package amplicons containing cytokine genes. Mol Ther. 2001;4:250–256.

    Article  CAS  PubMed  Google Scholar 

  265. Todo T, Martuza RL, Dallman MJ, Rabkin SD . In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity. Cancer Res. 2001;61:153–161.

    CAS  PubMed  Google Scholar 

  266. Wong RJ, Patel SG, Kim S, et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther. 2001;12:253–265.

    Article  CAS  PubMed  Google Scholar 

  267. Bennett JJ, Malhotra S, Wong RJ, et al. Interleukin 12 secretion enhances antitumor efficacy of oncolytic herpes simplex viral therapy for colorectal cancer. Ann Surg. 2001;233:819–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM . Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA. 2000;97:2208–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Jorgensen TJ, Katz S, Wittmack EK, et al. Ionizing radiation does not alter the antitumor activity of herpes simplex virus vector G207 in subcutaneous tumor models of human and murine prostate cancer. Neoplasia. 2001;3:451–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Chahlavi A, Todo T, Martuza RL, Rabkin SD . Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma. Neoplasia. 1999;1:162–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Advani SJ, Sibley GS, Song PY, et al. Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Therapy. 1998;5:160–165.

    Article  CAS  PubMed  Google Scholar 

  272. Bradley JD, Kataoka Y, Advani S, et al. Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus. Clin Cancer Res. 1999;5:1517–1522.

    CAS  PubMed  Google Scholar 

  273. Chung SM, Advani SJ, Bradley JD, et al. The use of a genetically engineered herpes simplex virus (R7020) with ionizing radiation for experimental hepatoma. Gene Therapy. 2002;9:75–80.

    Article  CAS  PubMed  Google Scholar 

  274. Blank SV, Rubin SC, Coukos G, Amin KM, Albelda SM, Molnar-Kimber KL . Replication-selective herpes simplex virus type 1 mutant therapy of cervical cancer is enhanced by low-dose radiation. Hum Gene Ther. 2002;13:627–639.

    Article  CAS  PubMed  Google Scholar 

  275. Spear MA, Sun F, Eling DJ, et al. Cytotoxicity, apoptosis, and viral replication in tumor cells treated with oncolytic ribonucleotide reductase-defective herpes simplex type 1 virus (hrR3) combined with ionizing radiation. Cancer Gene Ther. 2000;7:1051–1059.

    Article  CAS  PubMed  Google Scholar 

  276. Coukos G, Makrigiannakis A, Kang EH, Rubin SC, Albelda SM, Molnar-Kimber KL . Oncolytic herpes simplex virus-1 lacking ICP34.5 induces p53-independent death and is efficacious against chemotherapy-resistant ovarian cancer. Clin Cancer Res. 2000;6:3342–3353.

    CAS  PubMed  Google Scholar 

  277. Pawlik TM, Nakamura H, Yoon SS, et al. Oncolysis of diffuse hepatocellular carcinoma by intravascular administration of a replication-competent, genetically engineered herpesvirus. Cancer Res. 2000;60:2790–2795.

    CAS  PubMed  Google Scholar 

  278. Nakamura H, Mullen JT, Chandrasekhar S, Pawlik TM, Yoon SS, Tanabe KK . Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res. 2001;61:5447–5452.

    CAS  PubMed  Google Scholar 

  279. Miyatake S, Martuza RL, Rabkin SD . Defective herpes simplex virus vectors expressing thymidine kinase for the treatment of malignant glioma. Cancer Gene Ther. 1997;4:222–228.

    CAS  PubMed  Google Scholar 

  280. Aghi M, Chou TC, Suling K, Breakefield XO, Chiocca EA . Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res. 1999;59:3861–3865.

    CAS  PubMed  Google Scholar 

  281. Todo T, Rabkin SD, Martuza RL . Evaluation of ganciclovir-mediated enhancement of the antitumoral effect in oncolytic, multimutated herpes simplex virus type 1 (G207) therapy of brain tumors. Cancer Gene Ther. 2000;7:939–946.

    Article  CAS  PubMed  Google Scholar 

  282. Miyatake S, Iyer A, Martuza RL, Rabkin SD . Transcriptional targeting of herpes simplex virus for cell-specific replication. J Virol. 1997;71:5124–5132.

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Miyatake SI, Tani S, Feigenbaum F, et al. Hepatoma-specific antitumor activity of an albumin enhancer/promoter regulated herpes simplex virus in vivo. Gene Therapy. 1999;6:564–572.

    Article  CAS  PubMed  Google Scholar 

  284. Yamamura H, Hashio M, Noguchi M, et al. Identification of the transcriptional regulatory sequences of human calponin promoter and their use in targeting a conditionally replicating herpes vector to malignant human soft tissue and bone tumors. Cancer Res. 2001;61:3969–3977.

    CAS  PubMed  Google Scholar 

  285. Coffey MC, Strong JE, Forsyth PA, Lee PW . Reovirus therapy of tumors with activated Ras pathway. Science. 1998;282:1332–1334.

    Article  CAS  PubMed  Google Scholar 

  286. Hirasawa K, Yoon C, Nishikawa SG, Waisman DM, Lee PW . Reovirus therapy of metastatic cancer models in immune-competent mice. Proc Am Assoc Cancer Res. 2001;42:2427.

    Google Scholar 

  287. Hirasawa K, Nishikawa SG, Norman KL, Alain T, Kossakowska A, Lee PW . Oncolytic reovirus against ovarian and colon cancer. Cancer Res. 2002;62:1696–1701.

    CAS  PubMed  Google Scholar 

  288. Morris DG, Forsyth PA, Paterson KF, et al. A phase I clinical trial evaluating intralesional Reolysin (reovirus) in histologically confirmed malignancies. In: American Society of Clinical Oncology. Orlando, FL: J Clin Oncol. 2002 (abstract 92).

    Google Scholar 

  289. Gomella LG, Mastrangelo MJ, McCue PA, Maguire HJ, Mulholland SG, Lattime EC . Phase i study of intravesical vaccinia virus as a vector for gene therapy of bladder cancer. J Urol. 2001;166:1291–1295.

    Article  CAS  PubMed  Google Scholar 

  290. Mastrangelo MJ, Maguire Jr HC, Eisenlohr LC, et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 1999;6:409–422.

    Article  CAS  PubMed  Google Scholar 

  291. Mukherjee S, Haenel T, Himbeck R, et al. Replication-restricted vaccinia as a cytokine gene therapy vector in cancer: persistent transgene expression despite antibody generation. Cancer Gene Ther. 2000;7:663–670.

    Article  CAS  PubMed  Google Scholar 

  292. Wallack MK, Bash JA, Leftheriotis E, et al. Positive relationship of clinical and serologic responses to vaccinia melanoma oncolysate. Arch Surg. 1987;22:1460–1463.

    Article  Google Scholar 

  293. Wallack MK, Scoggin SD, Sivanandham M . Active specific immunotherapy with vaccinia melanoma oncolysate. Mt Sinai J Med. 1992;59:227–233.

    CAS  PubMed  Google Scholar 

  294. Wallack MK, Sivanandham M, Balch CM, et al. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J Am Coll Surg. 1998;187:69–77 (discussion 77–69).

    Article  CAS  PubMed  Google Scholar 

  295. Scoggin SD, Sivanandham M, Sperry RG, Wallack MK . Active specific adjuvant immunotherapy with vaccinia melanoma oncolysate. Ann Plast Surg. 1992;28:108–109.

    Article  CAS  PubMed  Google Scholar 

  296. van Ophoven A, Gitlitz B, Tso CL, et al. Phase I dose escalation trials of vaccinia (VV)-MUC-1-IL-2 gene therapy in patients with advanced MUC-1+ prostate cancer (CAP) and non small cell lung cancer (NSCLC) B. In: American Society of Clinical Oncology. New Orleans, LA: J Clin Oncol. 2000 (abstract 1811).

    Google Scholar 

  297. Eder JP, Kantoff PW, Roper K, et al. A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin Cancer Res. 2000;6:1632–1638.

    CAS  PubMed  Google Scholar 

  298. Gulley J, Chen AP, Dahut W, et al. Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate. 2002;53:109–117.

    Article  CAS  PubMed  Google Scholar 

  299. Schutz A, Oertli D, Marti WR, et al. Immunogenicity of nonreplicating recombinant vaccinia expressing HLA-A201 targeted or complete MART-1/Melan-A antigen. Cancer Gene Ther. 2001;8:655–661.

    Article  CAS  PubMed  Google Scholar 

  300. Timiryasova TM, Chen B, Fodor I . Replication-deficient vaccinia virus gene therpay vector: evaluation of exogenous gene expression mediated by PUV-inactivated virus in glioma cells. J Gene Med. 2001;3:468–477.

    Article  CAS  PubMed  Google Scholar 

  301. Naik AM, Xu H, Alexander HR, et al. A mutant vaccinia virus with improved tumor selectivity. Proceedings of the 54th Annual SSO Cancer Symposium. Washington, DC; 2001: 40.

    Google Scholar 

  302. Freund YR, Mirsalis JC, Fairchild DG, et al. Vaccination with a recombinant vaccinia vaccine containing the B7-1 co-stimulatory molecule causes no significant toxicity and enhances T cell-mediated cytotoxicity. Int J Cancer. 2000;85:508–517.

    Article  CAS  PubMed  Google Scholar 

  303. Shankar P, Schlom J, Hodge JW . Enhanced activation of rhesus T cells by vectors encoding a triad of costimulatory molecules (B7-1, ICAM-1, LFA-3). Vaccine. 2001;20:744–755.

    Article  CAS  PubMed  Google Scholar 

  304. Kalus RM, Kantor JA, Gritz L, et al. The use of combination vaccinia vaccines and dual-gene vaccinia vaccines to enhance antigen-specific T-cell immunity via T-cell costimulation. Vaccine. 1999;17:893–903.

    Article  CAS  PubMed  Google Scholar 

  305. Freytag SO, Khil M, Stricker H, et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 2002;62:4968–4976.

    CAS  PubMed  Google Scholar 

  306. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO . Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther. 2000;11:67–76.

    Article  CAS  PubMed  Google Scholar 

  307. Johnson L, Shen A, Boyle L, et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell. 2002;1:325–337.

    Article  CAS  PubMed  Google Scholar 

  308. Zhan J, Gao Y, Wang W, et al. Tumor-specific intravenous gene delivery using oncolytic adenoviruses. Cancer Gene Ther. in press.

  309. Dobrikova E, Florez P, Merrill M, Moore S, Gromeier M . Mechanism of tumor specific replication of oncolytic poliovirus recombinants. In: Oncolytic Viruses as Cancer Therapeutics. Banff, Alberta; 2003: 24.

    Google Scholar 

  310. Fernandez M, Obuchi M, Balachandran S, Barber GN . Defects in interferon signaling mediate virus-induced oncolysis. In: Oncolytic Viruses as Cancer Therapeutics. Banff, Alberta; 2003: 25.

    Google Scholar 

  311. Bergmann M, Rajtarova J, Sachet M, et al. Tumor-associated IFN resistance promotes oncolysis by influenza virus NS1-deletion mutants. In: Oncolytic Viruses as Cancer Therapeutics. Banff, Alberta; 2003: 26.

    Google Scholar 

  312. Peng K, Soeffker D, Myers R, et al. Biodistribution of oncolytic measles virus. In: Oncolytic Viruses as Cancer Therapeutics. Banff, Alberta; 2003: 30.

    Google Scholar 

  313. Nemunaitis J, Cunningham C, Senzer N, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 2003;10:737–744.

    Article  CAS  PubMed  Google Scholar 

  314. Kirn D, Martuza RL, Zwiebel J . Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med. 2001;7:781–787.

    Article  CAS  PubMed  Google Scholar 

  315. Wold WS, Toth K, Tollefson AE, et al. Oncolytic adenovirus vectors that overexpress ADP. In: Oncolytic Viruses as Cancer Therapeutics. Banff, Alberta; 2003: 18.

    Google Scholar 

  316. Akiyama M, Roelvink PW, Einfeld DA, Kovesdi I, King R, Wickham TJ . In vivo targeting of CAR- and integrin-ablated adenovirus vectors to tumors. In: Oncolytic Viruses as Cancer Therapeutics. Banff, Alberta; 2003: 12.

    Google Scholar 

  317. Fisher KD . Polymer-coated adenovirus can be programmed to infect cells using selected ligands and shows extended plasma circulation following intravenous injection. In: Oncolytic Viruses as Cancer Therapeutics. Banff, Alberta; 2003: 17.

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Brenda Marr for her competent and knowledgeable assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nemunaitis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, E., Nemunaitis, J. Oncolytic viral therapies. Cancer Gene Ther 11, 643–664 (2004). https://doi.org/10.1038/sj.cgt.7700733

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700733

Keywords

This article is cited by

Search

Quick links