Skip to main content
Log in

Slow oscillations in neural networks with facilitating synapses

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The synchronous oscillatory activity characterizing many neurons in a network is often considered to be a mechanism for representing, binding, conveying, and organizing information. A number of models have been proposed to explain high-frequency oscillations, but the mechanisms that underlie slow oscillations are still unclear. Here, we show by means of analytical solutions and simulations that facilitating excitatory (E f) synapses onto interneurons in a neural network play a fundamental role, not only in shaping the frequency of slow oscillations, but also in determining the form of the up and down states observed in electrophysiological measurements. Short time constants and strong E f synapse-connectivity were found to induce rapid alternations between up and down states, whereas long time constants and weak E f synapse connectivity prolonged the time between up states and increased the up state duration. These results suggest a novel role for facilitating excitatory synapses onto interneurons in controlling the form and frequency of slow oscillations in neuronal circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott, L. F., & Blum, K. I. (1996). Functional significance of long-term potentiation for sequence learning and prediction. Cerebral Cortex, 6, 406–416.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J., Lampl, I., Reichova, I., Carandini, M., & Ferster, D. (2000). Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nature Neuroscience, 3, 617–621.

    Article  PubMed  CAS  Google Scholar 

  • Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. Journal of Neuroscience, 22, 8691–8704.

    PubMed  CAS  Google Scholar 

  • Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.

    Article  PubMed  CAS  Google Scholar 

  • Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89, 2707–2725.

    Article  PubMed  Google Scholar 

  • Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. Journal of Neuroscience, 15, 604–622.

    PubMed  CAS  Google Scholar 

  • Contreras, D., Timofeev, I., & Steriade, M. (1996). Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. Journal of Physiology, 494(Pt 1), 251–264.

    PubMed  CAS  Google Scholar 

  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.

    Article  PubMed  CAS  Google Scholar 

  • Galarreta, M., & Hestrin, S. (1998). Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nature Neuroscience, Plos, 1, 587–594.

    Article  PubMed  CAS  Google Scholar 

  • Holcman, D., & Tsodyks, M. (2006). The emergence of up and down states in cortical networks. Plos. 2, e23.

    Article  CAS  Google Scholar 

  • Kozloski, J., Hamzei-Sichani, F., & Yuste, R. (2001). Stereotyped position of local synaptic targets in neocortex. Science, 293, 868–872.

    Article  PubMed  CAS  Google Scholar 

  • Lampl, I., Reichova, I., & Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22, 361–374.

    Article  PubMed  CAS  Google Scholar 

  • Markram, H., & Tsodyks, M. (1996). Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature, 382, 807–810.

    Article  PubMed  CAS  Google Scholar 

  • Markram, H., Wang, Y., & Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95, 5323–5328.

    Article  PubMed  CAS  Google Scholar 

  • Moruzzi, G., & Magoun, H. W. (1995). Brain stem reticular formation and activation of the EEG. 1949. Journal of Neuropsychiatry and Clinical Neurosciences, 7, 251–267.

    PubMed  CAS  Google Scholar 

  • Parga, N., & Abbott, L. F. (2007). Network model of spontaneous activity exhibiting synchronous transitions between up and down states. Frontiers in Neuroscience, 1, 57–66.

    Google Scholar 

  • Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., & Sakmann, B. (1998). Target-cell-specific facilitation and depression in neocortical circuits. Nature Neuroscience, 1, 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3, 1027–1034.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vives, M. V., Nowak, L. G., & McCormick, D. A. (2000). Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. Journal of Neuroscience, 20, 4286–4299.

    PubMed  CAS  Google Scholar 

  • Shu, Y., Hasenstaub, A., & McCormick, D. A. (2003). Turning on and off recurrent balanced cortical activity. Nature, 423, 288–293.

    Article  PubMed  CAS  Google Scholar 

  • Silberberg, G., & Markram, H. (2007). Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron, 53, 735–746.

    Article  PubMed  CAS  Google Scholar 

  • Silberberg, G., Wu, C., & Markram, H. (2004). Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. Journal of Physiology, 556, 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Steriade, M., Amzica, F., & Contreras, D. (1996). Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. Journal of Neuroscience, 16, 392–417.

    PubMed  CAS  Google Scholar 

  • Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993a). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262, 679–685.

    Article  PubMed  CAS  Google Scholar 

  • Steriade, M., Nunez, A., & Amzica, F. (1993b). A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: Depolarizing and hyperpolarizing components. Journal of Neuroscience, 13, 3252–3265.

    PubMed  CAS  Google Scholar 

  • Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: A view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.

    PubMed  CAS  Google Scholar 

  • Stern, E. A., Kincaid, A. E., & Wilson, C. J. (1997). Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. Journal of Neurophysiology, 77, 1697–1715.

    PubMed  CAS  Google Scholar 

  • Thomson, A. M., & Deuchars, J. (1997). Synaptic interactions in neocortical local circuits: Dual intracellular recordings in vitro. Cerebral Cortex, 7, 510–522.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M., Deuchars, J., & West, D. C. (1993). Single axon excitatory postsynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation. Neuroscience, 54, 347–360.

    Article  PubMed  CAS  Google Scholar 

  • Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10, 1185–1199.

    Article  PubMed  CAS  Google Scholar 

  • Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10, 821–835.

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano, G. (2007). Homeostatic signaling: The positive side of negative feedback. Current Opinion in Neurobiology, 17, 318–324.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. J. (1999). Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory. Journal of Neuroscience, 19, 9587–9603.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Gupta, A., & Markram, H. (1999). Anatomical and functional differentiation of glutamatergic synaptic innervation in the neocortex. Journal of Physiology (Paris), 93, 305–317.

    Article  CAS  Google Scholar 

  • Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9, 534–542.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the anonymous reviewers for their helpful comments. M.T. is partially supported by Israeli Science Foundation, Irving B. Harris Foundation and Abe & Kathryn Selsky Foundation. G.S. is supported by an HFSP long-term fellowship. O.B. is partially supported by the Azrieli foundation and the Kahn center for system biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Melamed.

Additional information

Action Editor: Nicolas Brunel

Appendices

Appendix A—Stability of dynamics with a “frozen” J ie

When short time scales are considered, the stability of Eq. (1) can be determined as a function of the parameter J ie . We use Eq. (1) in a matrix form for the supra-threshold linear regime.

$$ \begin{aligned} & {\left( \begin{aligned} & {\mathop E\limits^. } \\ & {\mathop I\limits^. } \\ \end{aligned} \right)} = A{\left( \begin{aligned} & E \\ & I \\ \end{aligned} \right)} + {\left( \begin{aligned} & \tfrac{\beta } {{\tau _{e} }}{\left( {E_{0} - T} \right)} \\ & \tfrac{\beta } {{\tau _{i} }}{\left( {I_{0} - T} \right)} \\ \end{aligned} \right)} \\ & A = {\left( {\begin{array}{*{20}c} {{\tfrac{{\beta J_{{ee}} - 1}} {{\tau _{e} }}}} & {{\tfrac{{ - \beta J_{{ei}} }} {{\tau _{e} }}}} \\ {{\tfrac{{\beta J_{{ie}} }} {{\tau _{i} }}}} & {{\tfrac{{ - \beta J_{{ii}} - 1}} {{\tau _{i} }}}} \\ \end{array} } \right)} \\ \end{aligned} $$
(A.1)

The condition for stability is a negative trace and positive determinant. Since Trace(A) is independent of J ie , we chose the simulation parameters (see Table 1) which render it negative, thus allowing stability for some J ie values. The stability is thus determined by Det(A), defining \(J_{ie}^{th} \) as a border between the stable and the unstable regimes:

$$J_{ie}^{th} = \frac{{\left( {\beta J_{ee} - 1} \right)\left( {\beta J_{ii} + 1} \right)}}{{\beta ^2 J_{ei} }}$$
(A.2)

\(J_{ie}^{th} \) represents the criterion for stability as follows: when J ie >\(J_{ie}^{th} \), E and I relax to a constant, and when J ie >\(J_{ie}^{th} \), the solution diverges.

Appendix B—estimating the oscillation borders

The right border of the oscillation regime (J R in Fig. 2(a)) can be calculated by searching for the \(J_{ie}^0 \) value for which the steady state becomes stable. This can be done by calculating the eigenvalues of the linearized dynamics at the steady state:

$$\left( {\begin{array}{*{20}c} {\frac{{\beta J_{ee} - 1}}{{\tau _e }}}&{\frac{{ - \beta J_{ei} }}{{\tau _e }}}&0&0 \\ {\frac{{\beta J_{ie}^0 x_{ss} u_{ss} }}{{\tau _i }}}&{\frac{{ - \left( {\beta J_{ii} + 1} \right)}}{{\tau _i }}}&{\frac{{\beta J_{ie}^0 x_{ss} E_{ss} }}{{\tau _i }}}&{\frac{{\beta J_{ie}^0 u_{ss} E_{ss} }}{{\tau _i }}} \\ {U\left( {1 - u_{ss} } \right)}&0&{ - \left( {\frac{1}{{\tau _f }} + E_{ss} U} \right)}&0 \\ { - x_{ss} u_{ss} }&0&{ - x_{ss} E_{ss} }&{ - \left( {\frac{1}{{\tau _r }} + E_{ss} u_{ss} } \right)} \\ \end{array} } \right),$$
(B.1)

where x ss , u ss , E ss are the steady state values.

The left border of the oscillation regime (JL in Fig. 2(a)) is defined by a divergence of the oscillations, and was thus searched for by simulating the network until the border between a stable limit cycle and divergent behavior was found.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melamed, O., Barak, O., Silberberg, G. et al. Slow oscillations in neural networks with facilitating synapses. J Comput Neurosci 25, 308–316 (2008). https://doi.org/10.1007/s10827-008-0080-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0080-z

Keywords

Navigation