Skip to main content
Log in

Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention.

Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alowitz MJ, Scherer MM (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36(3):299–305

    Article  PubMed  CAS  Google Scholar 

  • Alva VA, Peyton BM (2003) Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 37(19):4397–4402

    Article  PubMed  CAS  Google Scholar 

  • Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the In situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69(10):5884–5891

    Article  PubMed  CAS  Google Scholar 

  • Arahal DR, Ludwig W, Schleifer KH, Ventosa A (2002a) Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analysis. Int J Syst Evol Micr 52:241–249

    CAS  Google Scholar 

  • Arahal DR, Castillo AM, Ludwig W, Schleifer KH, Ventosa A (2002b) Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Micobiol 25:207–211

    Article  Google Scholar 

  • Aragandoña M, Martinez-Checa F, Llamas I, Arco Y, Quesada E, del Moral A (2006) A membrane-bound nitrate reductase encoded by the narGHJI operon is responsible for anaerobic respiration in Halomonas maura. Extremophiles 10:411–419

    Article  CAS  Google Scholar 

  • Badar U, Ahmed N, Beswick AJ, Pattanapipitpaisal P, Macaskie LE (2000) Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan. Biotechnol Lett 22:829–836

    Article  CAS  Google Scholar 

  • Bartlett RJ, Kimble JM (1976a) Behavior of chromium in soils: I. Trivalent forms. J Environ Qual 5(4):379–383

    CAS  Google Scholar 

  • Bartlett RJ, Kimble JM (1976b) Behavior of chromium in soils: II. Hexavalent forms. J Environ Qual 5(4):383–386

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Dimitriu PA, Shukla SK, Conradt J, Márquez MC, Ventosa A, Maglia A, Peyton BM, Pinkart HC, Mormile MR (2005) Nitrincola lacisaponensis gen. nov., sp. nov., a novel alkaliphilic bacterium isolated from an alkaline, saline lake. Int J Syst Evol Micr 55:2273–2278

    Article  CAS  Google Scholar 

  • Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191

    Article  CAS  Google Scholar 

  • Fendorf S, Wielinga BW, Hansel CM (2000) Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction. Int Geol Rev 42:691–701

    Article  Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB, Papenguth HW (2000) Biotransformation of uranium compounds in high ionic strength brine by a halophilic bacterium under denitrifying conditions. Environ Sci Technol 34(11):2311–2317

    Article  CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Li SW, Kostandarithes HM, Daly MJ, Romine MF, Brockman FJ (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington state. Appl Environ Microbiol 70(7):4230–4241

    Article  PubMed  CAS  Google Scholar 

  • Geelhoed JS, Meeussen JCL, Hillier S, Lumsdon DG, Thomas RP, Farmer JG, Paterson E (2002) Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue. Geochim et Cosmochim Acta 66(22):3927–3942

    Article  CAS  Google Scholar 

  • Guha H, Jayachandran K, Maurrasse F (2001) Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions. Envir Pollut 115:209–218

    Article  CAS  Google Scholar 

  • Horikoshi K (1996) Alkaliphiles—from an industrial point of view. FEMS Microbiol Rev 18:259–270

    CAS  Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2:185–190

    Article  PubMed  CAS  Google Scholar 

  • James BR (2001) Remediation-by-reduction strategies for chromate-contaminated soils. Environ Geochem Health 23:175–179

    Article  CAS  Google Scholar 

  • Jones BE, Grant WD (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  PubMed  CAS  Google Scholar 

  • Kamaludeen SPB, Megharaj M, Naidu R, Singleton I, Juhasz AL, Hawke BG, Sethunanthan N (2003) Microbial activity and phospholipid fatty acid pattern in long-term tannery waste-contaminated soil. Ecotoxicol Evniron Safety 56:302–310

    Article  CAS  Google Scholar 

  • Khan FA, Puls RW (2003) In situ abiotic detoxification and immobilization of hexavalent chromium. Ground Water Monit R 23(1):77–84

    Article  Google Scholar 

  • Khijniak TV, Medvedeva-Lyalikova NN, Simonoff M (2003) Reduction of pertechnetate by haloalkaliphilic strains of Halomonas. FEMS Microbiol Ecol 44:109–115

    Article  CAS  PubMed  Google Scholar 

  • Llamas I, del Moral A, Martinez-Checa F, Arco Y, Arias S, Quesada E (2006) Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest. Antonie Van Leeuwenhoek 89:395–403

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Lim H, Lee Y, Park J (2003) Use of waste iron metal for removal of Cr(VI) from water. Chemosphere 53:479–485

    Article  PubMed  CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Amer Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VIII) in cultures of dissimlatory metal-reducing bacteria. Biotechnol Bioeng 80(6):637–649

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53(7):1536–1540

    PubMed  CAS  Google Scholar 

  • Lovley DR, Anderson RT (2000) Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeol J 8:77–88

    Article  CAS  Google Scholar 

  • Melitas N, Chuffe-Moscoso O, Farrell J (2001) Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects. Environ Sci Technol 35(19):3948–3953

    Article  PubMed  CAS  Google Scholar 

  • Mertz W (1969) Chromium occurrence and function in biological systems. Physiol Rev 49(2):163–239

    PubMed  CAS  Google Scholar 

  • Morgado P, Pereira V, Pinto MS (2001) Chromium in Portuguese soils surrounding electroplating facilities. Environ Geochem Health 23:225–228

    Article  CAS  Google Scholar 

  • Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ, Peyton BM (1999) Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Environ Sci Pollut Manag 22(4):551–558

    CAS  Google Scholar 

  • Oie CSI, Albaugh CE, Peyton BM (2007) Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism. Water Res 41(6):1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Miller LG (1993) Biogeochemistry of natural gases in three alkaline, permanently stratified (Meromictic) lakes. USGS Paper 1570:439–452

    Google Scholar 

  • Oremland RS, Dowdle PR, Hoeft S, Sharp JO, Schaefer JK, Miller LG, Blum JS, Smith RL, Bloom NS, Wallshclaeger D (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic MonoLake, California. Geochim et Cosmochim Acta 64(18):3073–3084

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57:257–261

    Article  PubMed  CAS  Google Scholar 

  • Petruzzelli D, Tiravanti G, Santori M, Passino R (1994) Chromium removal and recovery from tannery wastes: laboratory investigation and field experience on a 10 m3/d demonstration plant. Water Sci Technol 30(5):225–233

    CAS  Google Scholar 

  • Pettine M, D’Ottone L, Campanella L, Millero FJ, Passino R (1998) The reduction of chromium (VI) by iron (II) in aqueous solutions. Geochim et Cosmochim Acta 62(9):1509–1519

    Article  CAS  Google Scholar 

  • Peyton BM, Mormile MR, Petersen JN (2001) Nitrate reduction with Halomonas campisalis: kinetics of denitrification at pH 9 and 12.5% NaCl. Water Res 35(17):4237–4242

    Article  PubMed  CAS  Google Scholar 

  • Pinkart HC, Simonsen B, Mormile MR, Peyton BM (2006) The sulfur cycle in a permanently meromictic haloalkaline lake. Instruments, methods, and missions for astrobiology IX. Proc SPIE 6309:21–31

    Google Scholar 

  • Rai D, Sass BM, Moore DA (1987) Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349

    Article  CAS  Google Scholar 

  • Sani RK, Peyton BM, Smith WA, Apel WA, Peterson JN (2002) Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Appl Microbiol Biotechnol 60:192–199

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Wang YT (1994) Modeling hexavalent chromium reduction in Escherichia coli 33456. Biotechnol Bioeng 43:293–300

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Kuenen JG (2005) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Foti M, Pinkart HC, Muyzer G (2007) Sulfur-oxidizing bacteria in soap lake (Washington state), a meromictic, Haloalkaline lake with an unprecedented high sulfide content. Appl Envir Microbiol 73:451–455

    Article  CAS  Google Scholar 

  • Stępniewska Z, Bucior K (2001) Chromium contamination of soils, waters, and plants in the vicinity of a tannery waste lagoon. Environ Geochem Health 23:241–245

    Article  Google Scholar 

  • Stewart DI, Burke IT, Mortimer RJG (2007) Stimulation of microbially mediated chromate reduction in alkaline soil–water systems. Geomicrobiol J 24(7):655–669

    Article  CAS  Google Scholar 

  • Tokunaga TK, Wan J, Hazen TC, Schwartz E, Firestone MK, Sutton SR, Newville M, Olson KR, Lanzirotti A, Rao W (2003) Distribution of chromium contamination and microbial activity in soil aggregates. J Environ Qual 32:541–549

    Article  PubMed  CAS  Google Scholar 

  • Twigg RS (1945) Oxidation-reduction aspects of resazurin. Nature 155:401–402

    Article  CAS  Google Scholar 

  • Viamajala S, Peyton BM, Peterson JN (2003) Modeling chromate reduction in Shewanella oneidensis MR-1: development of a novel dual-enzyme kinetic model. Biotechnol Bioeng 83(7):790–797

    Article  PubMed  CAS  Google Scholar 

  • Viera M, Curutchet G, Donati E (2003) A combined bacterial process for the reduction and immobilization of chromium. Internat Biodeterior Biodeg 52:31–34

    Article  CAS  Google Scholar 

  • Weng CH, Huang CP, Sanders PF (2001) Effect of pH on Cr(VI) leaching from soil enriched in chromite ore processing residue. Environ Geochem Health 23:207–211

    Article  CAS  Google Scholar 

  • Wielinga B, Mizuba MM, Hansel CM, Fendorf S (2001) Iron promoted reduction of chromate by dissimilatory iron-reduction bacteria. Environ Sci Technol 35(3):522–527

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacteria. Appl Environ Microbiol 70(9):5595–5602

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Christine Davitt of the Washington State University (WSU) Microscopy Center for help with obtaining SEM micrographs, Dr. William Howald of WSU for help with total Cr analysis, and Zhiyong Suo of the Image and Chemical Analysis Laboratory (ICAL) at Montana State University (MSU) for the AFM image. This work was supported by the NSF Soap Lake Microbial Observatory, grant number 0132157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent M. Peyton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

VanEngelen, M.R., Peyton, B.M., Mormile, M.R. et al. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington. Biodegradation 19, 841–850 (2008). https://doi.org/10.1007/s10532-008-9187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9187-1

Keywords

Navigation