Skip to main content
Log in

Robustness in Regulatory Networks: A Multi-Disciplinary Approach

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

We give in this paper indications about the dynamical impact (as phenotypic changes) coming from the main sources of perturbation in biological regulatory networks. First, we define the boundary of the interaction graph expressing the regulations between the main elements of the network (genes, proteins, metabolites, ...). Then, we search what changes in the state values on the boundary could cause some changes of states in the core of the system (robustness to boundary conditions). After, we analyse the role of the mode of updating (sequential, block sequential or parallel) on the asymptotics of the network, essentially on the occurrence of limit cycles (robustness to updating methods). Finally, we show the influence of some topological changes (e.g. suppression or addition of interactions) on the dynamical behaviour of the system (robustness to topology perturbations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aracena J, Demongeot J (2004) Mathematical methods for inferring regulatory networks interactions: application to genetic regulation. Acta Biotheor 52(4):391–400

    Article  Google Scholar 

  • Aracena J, Gonzalez M, Zuniga A, Mendez MA, Cambiazo V (2006) Regulatory network for cell shape changes during drosophila ventral furrow formation. J Theor Biol 239(1):49–62

    Article  Google Scholar 

  • Borenstein E, Ruppin E (2006) Direct evolution of genetic robustness in microRNA. Proc Natl Acad Sci USA 103(17):6593–6598

    Article  Google Scholar 

  • Cosnard M, Goles E (1997) Discrete state neural networks and energies. Neural Netw 10(2):327–334

    Article  Google Scholar 

  • Demongeot J (1981) Asymptotic inference for Markov random field on \({\mathbb{Z}}^2.\) In: Proceedings of a colloquium on numerical methods in the study of critical phenomena, vol 9 of Springer Series in Synergetics. Carry-le-Rouet, France, pp 254–267

  • Demongeot J, Aracena J, Thuderoz F, Baum TP, Cohen O (2003) Genetic regulation networks: circuits, regulons and attractors. Comptes Rendus de l’Académie des Sciences Biologies 326:171–188

    Google Scholar 

  • Dobrushin RL (1968) The problem of uniqueness of a Gibbsian random field and the problem of phase transitions. Funct Anal Appl 2(4):302–312

    Article  Google Scholar 

  • Elena SF, Carrasco P, Daròs JA, Sanjuán R (2006) Mechanisms of genetic robustness in RNA viruses. Rep Eur Mol Biol Organ 7(2):168–173

    Google Scholar 

  • Fatès N, Fiatlux. http://nazim.fates.free.fr/Logiciel.htm

  • Fatès N (2004) Robustesse de la dynamique des systèmes discrets : le cas de l’asynchronisme dans les automates cellulaires. PhD thesis, École Normale Supérieure de Lyon

  • Fatès N, Morvan M (2005) An experimental study of robustness to asynchronism for elementary cellular automata. Complex Syst 16(1):1–27

    Google Scholar 

  • Goles E, Fogelman-Soulié F, Pellegrin D (1985) Decreasing energy functions as a tool for studying threshold networks. Discrete Appl Math 12(3):261–277

    Article  Google Scholar 

  • Goles E, Martinez S (1990) Neural and automata networks: dynamical behavior and applications. Kluwer Academic Publishers

  • Harary F (1969) Graph theory. Addison-Wesley

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79(8):2554–2558

    Article  Google Scholar 

  • Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38:S20–S24

    Article  Google Scholar 

  • Ising E (1925) Beitrag zur theorie des ferromagnetismus. Zeitschrift fur Physics 31:253–258

    Article  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press

  • Leptin M (1999) Gastrulation in drosophila: the logic and the cellular mechanisms. J Eur Mol Biol Organ 18:3187–3192

    Google Scholar 

  • Leptin M (2005) Gastrulation movements: the logic and the nuts and bolts. Dev Cell 8(3):305–320

    Article  Google Scholar 

  • Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis Thaliana flower morphogenesis. J Theor Biol 193(2):307–319

    Google Scholar 

  • Moore E (1959) Shortest path through a maze. Ann Comput Lab Harv Univ

  • Onsager L (1944) Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys Rev 65(3–4):117–149

    Article  Google Scholar 

  • Ruelle D (1969) Statistical mechanics: rigourous results. W. A. Benjamin

  • Wolfe K (2000) Robustness—it’s not where you think it is. Nat Genet 25:3–4

    Article  Google Scholar 

  • Wolfram S (1984) Universality and complexity in cellular automata. Physica D 10(1–2):1–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Sené.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demongeot, J., Elena, A. & Sené, S. Robustness in Regulatory Networks: A Multi-Disciplinary Approach. Acta Biotheor 56, 27–49 (2008). https://doi.org/10.1007/s10441-008-9029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-008-9029-x

Keywords

Navigation