Skip to main content
Log in

Evaluation of different phenol hydroxylase-possessing phenol-degrading pseudomonads by kinetic parameters

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Phenol-degrading pseudomonads possessing different phenol hydroxylases (PH) were evaluated by the values of apparent half-saturation constant for phenol-oxygenating activity (K S ), maximum specific growth rate (μ max), lag-time length (λ), inhibition constant (K I ) and growth yield factor (Y X/S ). Strains of the same PH type showed similar kinetic parameters: single-component PH (sPH) harbouring strains had higher values of K S and lower values of μ max than the strains having multicomponent PH (mPH). However, the values of K I and the dependencies of the lag-time length on initial phenol concentration were strain-specific. The elevated ratio between specific activities of catechol 1,2-dioxygenase (C12O) and muconate cycloisomerase in sPH-strains caused irreversible accumulation of a high amount of exogenous cis,cis-muconate (CCM) which resulted in decreased Y X/S values. Co-presence of sPH and mPH genes did not give the strains PC16 and P69 any extra advantage and according to determined kinetic parameters only one PH was active during phenol degradation. At the same time simultaneous functioning of catechol ortho and meta cleavage pathways (strain PC20) resulted in higher μ max and Y X/S values. Evaluation of strains showed that the type of PH determined the efficiency of phenol degradation, whereas the tolerance to elevated phenol concentrations was strain-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72(1–2):248–254

    Article  PubMed  CAS  Google Scholar 

  • Cafaro V, Izzo V, Scognamiglio R, Notomista E, Capasso P, Casbarra A, Pucci P, Di Donato A (2004) Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: Interplay between two enzymes. Appl Environ Microbiol 70(4):2211–2219

    Article  PubMed  CAS  Google Scholar 

  • Cafaro V, Notomista E, Capasso P, Di Donato A (2005) Regiospecificity of two multicomponent monooxygenases from Pseudomonas stutzeri OX1: Molecular basis for catabolic adaptation of this microorganism to methylated aromatic compounds. Appl Environ Microbiol 71(8):4736–4743

    Article  PubMed  CAS  Google Scholar 

  • Chen W-M, Chang J-S, Wu C-H, Chang S-C (2004) Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis. Res Microbiol 155(8):672–680

    Article  PubMed  CAS  Google Scholar 

  • Dagley S, Evans WC, Ribbons DW (1960) New pathways in the oxidative metabolism of aromatic compounds by micro-organsms. Nature 188:560–566

    Article  PubMed  CAS  Google Scholar 

  • Ehrt S, Schirmer F, Hillen W (1995) Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250. Mol Microbiol 18(1):13–20

    Article  PubMed  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:1–8

    Article  Google Scholar 

  • Ellison SLR, Rösslein M, Williams A (2000) Eurachem/CITAC guide, quantifying uncertainty in analytical measurement, 2nd edn. Eurachem, Berlin

    Google Scholar 

  • Feist CF, Hegeman GD (1969) Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. J Bacteriol 100(2):869–877

    PubMed  CAS  Google Scholar 

  • Franck-Mokroβ AC, Schmidt E (1998) Simultaneous degradation of chloro- and methylsubstituted aromatic compounds: competition between Pseudomonas strains using the ortho and meta pathway or the ortho pathway exclusively. Appl Microbiol Biotechnol 50:233–240

    Article  Google Scholar 

  • Futamata H, Nagano Y, Watanabe K, Hiraishi A (2005) Unique kinetic properties of phenol-degrading Variovorax strains resposible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 71(2):904–911

    Article  PubMed  CAS  Google Scholar 

  • Goudar CT, Strevett KA (1998) Comparison of relative rates of BTEX biodegradation using respirometry. J Ind Microbiol Biotechnol 21:11–18

    Article  CAS  Google Scholar 

  • Healey FP (1980) Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb Ecol 5(4):281–286

    Article  Google Scholar 

  • Hegeman GD (1966) Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. J Bacteriol 91(3):1140–1154

    PubMed  CAS  Google Scholar 

  • Heinaru E, Truu J, Stottmeister U, Heinaru A (2000) Three types of phenol and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol Ecol 31:195–205

    Article  PubMed  CAS  Google Scholar 

  • Heinaru E, Viggor S, Vedler E, Truu J, Merimaa M, Heinaru A (2001) Reversible accumulation of p-hydroxybenzoate and catechol determines the sequential decomposition of phenolic compounds in mixed substrate cultivations in pseudomonads. FEMS Microbiol Ecol 37:79–89

    Article  CAS  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important population selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiol Ecol 51:363–373

    Article  PubMed  CAS  Google Scholar 

  • Hino S, Watanabe K, Takahashi N (1998) Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties. Microbiology 144:1765–1772

    Article  PubMed  CAS  Google Scholar 

  • Jiang H-L, Tay ST-L, Maszenan AM, Tay J-H (2006) Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiol Ecol 57:182–191

    Article  PubMed  CAS  Google Scholar 

  • Kivisaar M, Horak R, Kasak L, Heinaru A, Habicht J (1990) Selection of independent plasmids determining phenol degradation in Pseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase. Plasmid 24(1):25–36

    Article  PubMed  CAS  Google Scholar 

  • Kivisaar M, Kasak L, Nurk A (1991) Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of phenol-degrading Pseudomonas sp. strain EST1001. Gene 98(1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Kiesel B, Müller RH (2002) The meta pathway as a potential energy-generating secuence and its effects on the growth rate during the utilisation of aromatics. Acta Biotechol 22(3–4):221–134

    Article  CAS  Google Scholar 

  • Kovárová- Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62(3):646–666

    PubMed  Google Scholar 

  • Kukor JJ, Olsen RH (1990) Molecular cloning, characterization, and regulation of a Pseudomonas pickettii PKO1 gene encoding phenol hydroxylase and expression of the gene in Pseudomonas aeruginosa PAO1c. J Bacteriol 172:4624–4630

    PubMed  CAS  Google Scholar 

  • Kukor JJ, Olsen RH (1991) Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol and cresols by Pseudomonas pickettii PKO1. J Bacteriol 173(15):4587–4594

    PubMed  CAS  Google Scholar 

  • Merimaa M, Heinaru E, Liivak M, Vedler E, Heinaru A (2006) Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes. Arch Microbiol 186:287–296

    Article  PubMed  CAS  Google Scholar 

  • Müller RH, Babel W (1996) Growth rate-dependent expression of phenol-assimilation pathways in Alcaligenes eutrophus JMP 134—the influence of formate as an auxiliary energy source on phenol conversion characteristics. Appl Microbiol Biotechnol 46:156–162

    Article  Google Scholar 

  • Ng LC, Shingler V, Sze CC, Poh CL (1994) Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Gene 151(1–2):29–36

    Article  PubMed  CAS  Google Scholar 

  • Nurk A, Kasak L, Kivisaar M (1991) Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida. Gene 102(1):13–18

    Article  PubMed  CAS  Google Scholar 

  • Ornston LN (1971) Regulation of catabolic pathways in Pseudomonas. Bacteriol Rev 35(2):87–116

    PubMed  CAS  Google Scholar 

  • Ornston LN, Stanier RY (1966) The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. I. Biochemistry. J Biol Chem 241(16):3776–3786

    PubMed  CAS  Google Scholar 

  • Peters M, Heinaru E, Talpsep E, Wand H, Stottmeister U, Heinaru A, Nurk A (1997) Acquisition of a deliberately introduced phenol degradation operon, pheBA, by different indigenous Pseudomonas species. Appl Environ Microbiol 63(12):4899–4906

    PubMed  CAS  Google Scholar 

  • Pessione E, Divari S, Griva E, Cavaletto M, Rossi GL, Gilardi G, Gilunta C (1999) Phenol hydroxylase from Acinetobacter radioresistens is a multicomponent enzyme. Purification and characterization of the reductase moiety. Eur J Biochem 265(2):549–555

    Article  PubMed  CAS  Google Scholar 

  • Pieper DH, Stadler-Fritzsche K, Knackmuss H-J, Timmis KN (1995) Formation of dimethylmuconolactones from dimethylphenols by Alcaligenes eutrophus JMP 134. Appl Environ Microbiol 61(6):2159–2165

    PubMed  Google Scholar 

  • Polymenakou PN, Stephanou EG (2005) Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation 16:403–413

    Article  PubMed  CAS  Google Scholar 

  • Shingler V, Franklin CH, Tsuda M, Holroyd D, Bagdasarian M (1989) Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600. J Gen Microbiol 135:1083–1092

    PubMed  CAS  Google Scholar 

  • Takeo M, Maeda Y, Okada H, Miyama K, Mori K, Ike M, Fujita M (1995) Molecular cloning and sequencing of the phenol hydroxylase gene from Pseudomonas putida BH. J Ferment Bioeng 79(5):485–488

    Article  CAS  Google Scholar 

  • Vollmer MD, Hoier H, Hecht H-J, Schell U, Gröning J, Goldman A, Schlömann M (1998) Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild-type enzymes and engineered variants. Appl Environ Microbiol 64(9):3290–3299

    PubMed  CAS  Google Scholar 

  • Watanabe K, Teramoto M, Futamata H, Harayama S (1998) Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64(11):4396–4402

    PubMed  CAS  Google Scholar 

  • Watanabe K, Futamata H, Harayama S (2002) Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek 81:655–663

    Article  PubMed  CAS  Google Scholar 

  • Whiteley AS, Wiles S, Lilley AK, Philp J, Bailey MJ (2001) Ecological and physiological analyses of Pseudomonad species within a phenol remediation system. J Microbiol Methods 44:79–88

    Article  PubMed  CAS  Google Scholar 

  • Williams PA, Shaw LE (1997) mucK, a gene in Acinetobacter calcoaceticus ADP1 (BD413), encodes the ability to grow on exogenous cis,cis-muconate as the sole carbon source. J Bacteriol 179(18):5935–5942

    PubMed  CAS  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, van´t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875–1881

    PubMed  Google Scholar 

Download references

Acknowledgments

The Estonian Science Foundation, Grant 5682, and the Institute of Molecular and Cell Biology, University of Tartu, supported this research. We gratefully acknowledge Prof. I. Leito, Dr. T. Alamäe and Dr. K. Orupõld for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Viggor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viggor, S., Heinaru, E., Künnapas, A. et al. Evaluation of different phenol hydroxylase-possessing phenol-degrading pseudomonads by kinetic parameters. Biodegradation 19, 759–769 (2008). https://doi.org/10.1007/s10532-008-9180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9180-8

Keywords

Navigation